• Title/Summary/Keyword: debonding failure model

Search Result 41, Processing Time 0.019 seconds

An Analytical Study on Limits of Debonding Failure for RC Beams strengthened with NSM Reinforcements (NSM 보강 RC보의 부착파괴 제한에 관한 해석적 연구)

  • Jung, Woo-Tai;Park, Jong-Sup;Park, Young-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.153-156
    • /
    • 2006
  • This paper presents an analytical results on limits of debonding failure for RC beams strengthened with near-surface mounted(NSM) CFRP strips. An analytical model was derived to predict the failure mode and the maximum load. An analytical model has two assumptions. The first is that the debonding failure occurs at the epoxy-concrete interfaces. The second is that the debonding failure occurs at the end of the FRP reinforcement due to concentration of shear stress. Results of the comparison of existing test data and analytical model data have predicted the failure mode and the maximum load well. Also, this paper proposed limits of debonding failure to prevent the debonding using the strengthening area and the groove depth.

  • PDF

Debonding Failure Model for RC Beams Strengthened with Externally Bonded Prestressed CFRP Plates (탄소섬유판 긴장재로 외부 긴장 보강된 철근콘크리트 보의 부착파괴 모델)

  • Park, Jong Sup;Jung, Woo Tai;Park, Young Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.447-456
    • /
    • 2008
  • This paper suggests a modified debonding failure model for the externally bonded prestressed CFRP plate strengthening system. In order to reduce the error that may occur in the experimental results, statistical analysis of the experimental results produced by previous researchers was conducted to propose a debonding failure model. The experimental results of beams strengthened with bonded CFRP plates have made it possible to verify the debonding failure occurring before the final failure in the prestressing system. The corresponding strain increased with the effective prestress. Accordingly, the debonding failure model was modified by considering the effective prestress so as to fit with the CFRP prestressing system.

An Analytical Model on the Interface Debonding Failure of RC Beams Strengthened by GFRP (GFRP로 보강된 RC보의 계면박리파괴 해석모델)

  • 김규선;심종성
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.69-80
    • /
    • 1999
  • The strengthening of reinforced concrete structures by externally bonded GFRP has become increasingly common in resent years. However the analysis and design method for GFRP plate strengthening of RC beams is not well established yet. The purpose of present paper is, therefore, to define the failure mechanism and failure behavior of strengthened RC beam using GFRP and then to propose a resonable method for the calculation of interface debonding load for those beams. From the experimental results of beams strengthened by GFRP, the influence of length and thickness, width of plate on the interfacial debonding failure behavior of beam is studied and, on the basis of test results, the semi-empirical equation to predict debonding load is developed. The proposed theory based on nonlinear analysis and critical flexural crack width, predicts relatively well the debonding failure load of test beams and may be efficiently used in the analysis and design of strengthened RC beams using GFRP.

Debonding failure analysis of FRP-retrofitted concrete panel under blast loading

  • Kim, Ho Jin;Yi, Na Hyun;Kim, Sung Bae;Nam, Jin Won;Ha, Ju Hyung;Kim, Jang-Ho Jay
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.479-501
    • /
    • 2011
  • Even though fiber reinforced polymer (FRP) has been widely used as a retrofitting material, the FRP behavior and effect in FRP retrofitted structure under blast loading, impulsive loading with instantaneous time duration, has not been accurately examined. The past studies have focused on the performance of FRP retrofitted structures by making simplifications in modeling, without incorporating accurate failure mechanisms of FRP. Therefore, it is critical to establish an analytical model that can properly consider the specific features of FRP material in evaluating the response of retrofitted concrete structures under blast loading. In this study, debonding failure analysis technique for FRP retrofitted concrete structure under blast loading is suggested by considering FRP material characteristics and debonding failure mechanisms as well as rate dependent failure mechanism based on a blast resisting design concept. In addition, blast simulation of FRP retrofitted RC panel is performed to validate the proposed model and analysis method. For validation of the proposed model and analysis method, the reported experimental results are compared with the debonding failure analysis results. From the comparative verification, it is confirmed that the proposed analytical model considering debonding failure of FRP is able to reasonably predict the behavior of FRP retrofitted concrete panel under blast loading.

Parallel computation for debonding process of externally FRP plated concrete

  • Xu, Tao;Zhang, Yongbin;Liang, Z.Z.;Tang, Chun-An;Zhao, Jian
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.803-823
    • /
    • 2011
  • In this paper, the three dimensional Parallel Realistic Failure Process Analysis ($RFPA^{3D}$-Parallel) code based on micromechanical model is employed to investigate the bonding behavior in FRP sheet bonded to concrete in single shear test. In the model, the heterogeneity of brittle disordered material at a meso-scale was taken into consideration in order to realistically demonstrate the mechanical characteristics of FRP-to-concrete. Modified Mohr-coulomb strength criterion with tension cut-off, where a stressed element can damage in shear or in tension, was adopted and a stiffness degradation approach was used to simulate the initiation, propagation and growth of microcracks in the model. In addition, a Master-Slave parallel operation control technique was adopted to implement the parallel computation of a large numerical model. Parallel computational results of debonding of FRP-concrete visually reproduce the spatial and temporal debonding failure progression of microcracks in FRP sheet bonded to concrete, which agrees well with the existing testing results in laboratory. The numerical approach in this study provides a useful tool for enhancing our understanding of cracking and debonding failure process and mechanism of FRP-concrete and our ability to predict mechanical performance and reliability of these FRP sheet bonded to concrete structures.

Multiple Cracking Model of Fiber Reinforced High Performance Cementitious Composites under Uniaxial Tension

  • Wu, Xiangguo;Han, Sang-Mook
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.71-77
    • /
    • 2009
  • A theoretical model of multiple cracking failure mechanism is proposed herein for fiber reinforced high performance Cementitious composites. By introducing partial debonding energy dissipation on non-first cracking plane and fiber reinforcing parameter, the failure mechanism model of multiple cracking is established based on the equilibrium assumption of total energy dissipation on the first crack plane and non-first cracking plane. Based on the assumption of the first crack to be the final failure crack, energy dissipation terms including complete debonding energy, partial debonding energy, strain energy of steel fiber, frictional energy, and matrix fracture energy have been modified and simplified. By comparing multiple cracking number and energy dissipations with experiment results of the reference's data, it indicates that this model can describe the multiple cracking behavior of fiber reinforced high performance cementitious composites and the influence of the partial debonding term on energy dissipation is significant. The model proposed may lay a foundation for the predictions of the first cracking capacity and post cracking capacity of fiber reinforced high performance cementitious composites and also can be a reference for optimal mixture for construction cost.

An Analytical Model for FRP Debonding in Strengthened RC Beams under Monotonic and Cyclic Loads

  • Moein, Reza Saeidi;Tasnimi, Abbas Ali
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.499-511
    • /
    • 2016
  • Reinforced concrete (RC) beams strengthened by externally bonded reinforcement often fail by debonding. This paper presents an experimental and analytical study aimed at better understanding and modeling the fiber reinforced polymer (FRP) debonding failures in strengthened RC beams under monotonic and cyclic loads. In order to investigate the flexural behavior and failure modes of FRP-strengthened beams under monotonic and cyclic loadings, an experimental program was carried out. An analytical study based on the energy balance of the system was also performed. It considers the dominant mechanisms of energy dissipation during debonding and predicts the failure load of the strengthened beams. Validation of the model was carried out using test data obtained from the own experimental investigation.

Modeling of RC shear walls strengthened by FRP composites

  • Sakr, Mohammed A.;El-khoriby, Saher R.;Khalifa, Tarek M.;Nagib, Mohammed T.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.407-417
    • /
    • 2017
  • RC shear walls are considered one of the main lateral resisting members in buildings. In recent years, FRP has been widely utilized in order to strengthen and retrofit concrete structures. A number of experimental studies used CFRP sheets as an external bracing system for retrofitting of RC shear walls. It has been found that the common mode of failure is the debonding of the CFRP-concrete adhesive material. In this study, behavior of RC shear wall was investigated with three different micro models. The analysis included 2D model using plane stress element, 3D model using shell element and 3D model using solid element. To allow for the debonding mode of failure, the adhesive layer was modeled using cohesive surface-to-surface interaction model at 3D analysis model and node-to-node interaction method using Cartesian elastic-plastic connector element at 2D analysis model. The FE model results are validated comparing the experimental results in the literature. It is shown that the proposed FE model can predict the modes of failure due to debonding of CFRP and behavior of CFRP strengthened RC shear wall reasonably well. Additionally, using 2D plane stress model, many parameters on the behavior of the cohesive surfaces are investigated such as fracture energy, interfacial shear stress, partial bonding, proposed CFRP anchor location and using different bracing of CFRP strips. Using two anchors near end of each diagonal CFRP strips delay the end debonding and increase the ductility for RC shear walls.

An Experimental Study to Prevent Debonding Failure of Full-Scale RC Beam Strengthened with Multi-Layer CFS

  • You Young-Chan;Choi Ki-Sun;Kim Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.867-873
    • /
    • 2004
  • It has been known that debonding failures between CFS(Carbon Fiber Sheet) and concrete in the strengthened RC beams are initiated by the peeling of the sheets in the region of combined large moment and shear forces, being accompanied by the large shear deformation after flexural cracks. These shear deformation effects are seldom occurred in small-scale model tests, but debondings due to the large shear deformation effects are often observed in a full-scale model tests. The premature debonding failure of CFS, therefore, must be avoided to confirm the design strength of full-scale RC beam in strengthening designs. The reinforcing details, so- called 'U-Shape fiber wrap at mid-span' which wrapped the RC flexural members around the webs and tension face at critical section with CFS additionally, were proposed in this study to prevent the debonding of CFS. Other reinforcing detail, so called 'U-Shape fiber wrap at beam end' were included in this tests and comparisons were made between them.

Effect of core shape on debonding failure of composite sandwich panels with foam-filled corrugated core

  • Malekinejadbahabadi, Hossein;Farrokhabadi, Amin;Rahimi, Gholam H;Nazerigivi, Amin
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.467-482
    • /
    • 2022
  • One of the major failure modes in composite sandwich structures is the separation between skins and core. In this study, the effect of employing foam filled composite corrugated core on the skin/core debonding (resistance to separation between skin and core) is investigated both experimentally and numerically. To this aim, triangular corrugated core specimens are manufactured and compared with reference specimens only made of PVC foam core in terms of skin/core debonding under bending loading. The corrugated composite laminates are fabricated using the hand layup method. Also, the Vacuumed Infusion Process (VIP) is employed to join the skins to the core with greater quality. Utilizing an End Notched Shear (ENS) fixture, three point bending tests are performed on the manufactured sandwich composite panels. The results reveal that the resistance to separation capacity and flexural stiffness of sandwich composite has been increased about 170% and 76%, respectively by using a triangular corrugated core. The Cohesive Zone Model (CZM) with appropriate cohesive law in ABAQUS finite element software is used to model the progressive face/core interfaces debonding the difference between experimental and numerical results in predicting the maximum born load before the skin/core separation is about 6 % in simple core specimens and 3% in triangular corrugated core specimens.