• Title/Summary/Keyword: deck plate

Search Result 277, Processing Time 0.033 seconds

Effects of Pavement Stiffness on the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향)

  • 이환우;박순호;이동준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.385-392
    • /
    • 2001
  • The stiffness of pavement is scarcely considered in structural analysis of the superstructure bridge. It will be reasonable in the case of asphalt concrete pavement over concrete deck plate because stiffness of the pavement compared with concrete deck plate can be ignored. Additionally, it is considered correct to do a design with a safety. However, various pavement materials which have even value reaching to the elastic modulus of concrete are applied to the orthotropic steel deck plate which has a relatively less stiffness comparing with the concrete deck plate. In this paper, the steel plate deck of the bridge of real project was modeled considering the pavement stiffness for the FEM analysis and the linear elastic analysis was performed. It was assumed to be perfectly bonded between the steel plate deck and the pavement and the temperature effect was ignored. It was analyzed on the vertical deflection of steel deck plate influencing to the serviceability of pavement and the bending stress of steel deck plate related to the fatigue life. As a result, It was indicated that the structural behavior of the orthotropic steel deck plate could be affected by the stiffness of pavement in some cases.

  • PDF

The Analytical Study on the Cause of Fatigue Damage and the Improvement of Fatigue Performance for Orthotropic Steel Deck (강바닥판 피로손상 원인규명 및 피로성능 개선에 관한 해석적 연구)

  • Kyung Kab-Soo;Shin Dong-Ho;Kim Kyo-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.647-654
    • /
    • 2006
  • In orthotropic steel decks, it is likely to have defects due to fatigue damages because most of structural joints(the connection of longitudinal rib and transverse rib, the connection of deck plate and longitudinal rib) are connected by welds. However. orthotropic steel decks have many advantages. such as light weight and reduction of construction time. in comparison with concrete decks. Therefore. they are mostly used in long-span bridges and urban highway bridges. This study consists of the cause identication of fatigue damage and the suggestion of rational thickness on deck plate about the connection of deck plate and longitudinal rib. The results are as follows: fatigue damage cause at the connection of deck plate and longitudinal rib is local deformation in deck plate. And, rational thickness of deck plate is 16mm thickness.

  • PDF

A Fundamental Study on the Effects of Pavement Stiffness to the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향에 관한 기초연구)

  • Lee, Hwan-Woo;Jung, Du-Hwoe
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.191-198
    • /
    • 2003
  • The pavement stiffness is scarcely used in structural analysis to design the superstructure of bridge. It is reasonable not to consider it in the case of asphalt concrete pavement over concrete deck because the pavement stiffness compared with the concrete deck plate can be ignored. However, sometimes, the pavement materials have a similar amount of elastic modulus to concrete and are applied to the orthotropic steel deck plate which has relatively less stiffness compared with the concrete deck plate. In this paper, the steel plate deck of a real bridge project was analyzed by considering the pavement stiffness by linear elastic FEM. It was assumed that a perfect bond between the steel plate deck and the pavement exited. The results indicated that the structural behavior of the orthotropic steel deck plate can be estimated enough to affect the evaluation result of structural capacity in some cases. Therefore, the investigations by experimental tests and more advanced numerical model are indispensible in figuring the design formula for considering the effects of pavement stiffness in the structural analysis of an orthotropic bridge.

An Experimental Study on the Flexural Behavior of Structural Deck Plate Continuous Slabs (구조용 데크 플레이트 연속 슬래브의 휨거동에 관한 실험적 연구)

  • 김영호;박영석;박성우;고영우;양근혁;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.202-205
    • /
    • 2003
  • The purpose of this experimental study is to understand the flexural Behavior of structural deck plate continuous slabs (power deck plate slabs). The main variables considered in this test are thickness of the slab and the deck plate. Five specimens that have length of 600cm and width of 60cm were manufactured. Test results indicated that the ultimate flexural strength of power deck plate slabs was conservative compared to ACI flexural provisions. But, suitable arrangement of bar of top reinforcement is needed for crack control.

  • PDF

A Study on Application for Deck Plate Substitute Type Wood System Form of Frame Type Parking Lot (골조형 주차장의 Deck Plate 대체형 목제 시스템 거푸집 적용성 연구)

  • Shin, Yong-Jae;Shin, Woon-Sik;Heo, Jae-Won;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.123-126
    • /
    • 2006
  • Existing Deck Plate for a one of system forms, there is various advantage and application actual results increasing rapidly. But design of deck is depending on engineering data collections or design data on deck manufacture ordinarily. When construct, is responsible for deflection occurrence, And Because confirmation of crack occurrence region is impossible, there is difficulty of repair, reinforcement about crack and water leakage. According to got following conclusion as result that economic performance, preservation administration and repair reinforcement develops easy using steel truss snap tie by wedge pin on coating plywood that is slab Panel Wood System Form method of construction there is Deck Plate's advantage. (1) In stab lower part is exposed disjointing in which a criminal is fastened to be interrogated after construction acceptance and repair, reinforcement of crack is possible (2) Construction cost curtailment effect of about 29.2% than conventional type and about 10% than deck plate (3) Construction period reduction of about 3 day than conventional type and about 0.3 day than deck plate (4) Labor curtailment effect more than about $29{\sim}50%$ from conventional type

  • PDF

A Study on Strength of shear Connectors in Composite Beams of Steel and Lightweight Concrete Slabs with Deck Plate (덱크플레이트를 사용한 경량콘크리트 슬래브와 철골보의 합성보에서 쉬어코넥터의 내력에 관한 연구)

  • 김종식;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.293-298
    • /
    • 1995
  • The strength of shear connectors embedded in lightweight concrete slab with deck plate is influenced by various factors of deck plate, shear conncetor and concrete. Generally, it is reported that the strength of shear connector in lightweight concrete decreases in comparison with that in normal concrete. So this paper is to use compressive strength of lilghtweight concrete, width-height ratio of deck plate, and cross sectional area of shear conncetor as variables, to evaluate the strength of shear conncetors in composite beam of steel and lilghtweight concrete slabs with deck plate, and then to suggest the reasonable strength equation by comparing the push-out test results with establixhed strength formula. As the result of 24 specimens test, in case of lightweight concrete slab with deck plate, it has showed that in the same strength, the strength of shear connector decreased about 10~20% in comparison with that in normal concrete. In spite of lightweight concrete, the test results were closely approached the established strength formula of shear connector using Fisher's reduction coefficient.

  • PDF

EN 1991-2 traffic loads design charts for closed rib orthotropic deck plate based on Pelikan-Esslinger method

  • Vlasic, Andjelko;Radic, Jure;Savor, Zlatko
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.303-323
    • /
    • 2009
  • Charts for the bending moments in the closed rib orthotropic deck plate are derived, based on the method originally introduced by Pelikan and Esslinger. New charts are done for EN 1991-2 traffic load distribution schemes. The governing Huber plate equation is solved utilizing Fourier series for various bridge deck plate boundary conditions. Bending moments are given as a function of deck plate rigidities and span length between cross beams. Old diagrams according to DIN 1072, the new ones according to EN 1991-2 and FE analyses results are compared. For typical bridge orthotropic deck plates, it can be concluded that the new EN 1991-2 traffic loads produce larger mid-span bending moments when two lane schemes are used, then those of DIN 1072. For support moments, DIN 1072 gives larger values for any number of lanes, especially under span lengths of 5m. The relevant differences are up to 25%.

A Efficient Vibration Analysis Method for the Cooncrete-Steel Deck Slab (콘크리트와 강제데크의 합성 바닥판의 실용적인 진동해석 방법)

  • Kim, Gee-Cheol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.91-100
    • /
    • 2005
  • Composite slab structures consisted with steel deck plate and concrete material show generally anisotropic structural behavior because of different stiffness between the major direction and sub-direction of deck plate, and also the structures can be regarded as the laminated slab structures. It is necessary for the composite deck slab structures to carry out the exact vibration analysis to evaluate the serviceability. Also, it is needed to evaluate the exact structural behavior of composite deck slab with a layered orthotropic materials. In this paper, the thickness of topping concrete and deck plate are used to calculate the material coefficient stiffness of a sub-direction, and an equivalent depth calculated from sectional stiffness of concrete and deck plate is applied to get the stiffness of a major direction. The stiffness of two layered composite plates with different depth is determined by laminated theory. It is concluded that the presented method can efficiently analyze the structural behavior of composite deck slab consisted with steel deck plate and concrete material in the practical engineering field.

  • PDF

Experimental Study on Structural Behavior of Double Ribbed Deep-Deck Plate under Construction Loads (시공하중이 작용하는 더블리브 깊은 데크플레이트의 구조거동에 대한 실험적 연구)

  • Heo, Inwook;Han, Sun-Jin;Choi, Seung-Ho;Kim, Kang Su;Kim, Sung-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.49-57
    • /
    • 2019
  • Recently, the use of deep deck plate has been increased in various structures, such as underground parking lots, logistics warehouses, because it can reduce construction periods and labor costs. In this study, a newly developed Double Deck (D-deck) plate which can leads to save story heights has been introduced, and experimental tests on a total of five D-deck plates under construction loads have been carried out to investigate their structural performance at construction stage. The loads were applied by sands and concrete to simulate the actual distributed loading conditions, and the vertical deflection of D-Deck and the horizontal deformation of web were measured and analyzed in detail. As a result, it was confirmed that all the D-decks showed very small vertical deflection of less than 5.34 mm under construction loads, which satisfies the maximum deflection limit of L / 180. In addition, the D-Deck plate was found to have a sufficient rigidity to resist construction loads in a stable manner.

Test on the Structural Performance of the TOX Deck plate - Evaluation of Structural Safety during Construction Stage - (무용접 압접 데크플레이트의 구조성능에 관한 실험 - 시공단계에서의 구조안전성 평가 -)

  • Oh, Sang Hoon;Kim, Young Ju;Yoon, Myung Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.701-709
    • /
    • 2008
  • Owing to the decreased work term and the convenience of construction work in Korea, the steel deck plate system has been widely used in the construction field. Most of all, due to its good stiffness and economic consideration, the steel-wire-integrated deck plate system (or truss deck plate system) has become very popular in recent years. But although it has many advantages, the truss deck plate system has a critical defect: it gets rusty in the welding joints between the lattice steel wire and the deck plate, resulting in the cracking of such welding joints and water leakage. To address these problems, a new type of truss deck plate system, which need not be welded and does not rust, was proposed herein: the TOX deck plate system. In this study, tests were conducted on 15 specimens to evaluate the structural safety of the proposed deck plate system during the construction stage. The test parameters were as follows: the depth of the slab the length of the span the diameters of the top, bottom, and lattice steel wire and the material properties of the zinc-coated steel sheets. The test results show that the TOX deck plate system can guarantee structural safety owing to its deflection and strength.