• 제목/요약/키워드: denaturant tolerance

검색결과 2건 처리시간 0.014초

Enhanced Stability of Tyrosine Phenol-Lyase from Symbiobacterium toebii by DNA Shuffling

  • Kim, Jin-Ho;Song, Jae-Jun;Kim, Bong-Gyun;Sung, Moon-Hee;Lee, Sang-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.153-157
    • /
    • 2004
  • Tyrosine phenol-lyase (TPL) is a useful enzyme for the synthesis of pharmaceutical aromatic amino acids. In the current study, sequential DNA shuffling and screening were used to enhance the stability of TPL. Twenty-thousand mutants were screened, and several improved variants were isolated. One variant named A13V, in which the $13^{th}$ amino acid alanine was substituted by valine, exhibited a higher temperature and denaturant stability than the wild-type TPL. The purified mutant TPL, A13V, retained about 60% of its activity at $76^\circ{C}$, whereas the activity of the wild-type TPL decreased to less than 20% at the same temperature. Plus, A13V exhibited about 50% activity with 3 M urea, while the wild-type TPL lost almost all its catalytic activity, indicating an increased denaturant tolerance in the mutant A13V. It is speculated that the substitution of Val for the Ala in the $\beta$-strand of the N-terminal arm was responsible for the heightened stabilization, and that the current results will contribute to further research on the structural stability of TPL.

Identification and Characterization of an Antifungal Protein, AfAFPR9, Produced by Marine-Derived Aspergillus fumigatus R9

  • Rao, Qi;Guo, Wenbin;Chen, Xinhua
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.620-628
    • /
    • 2015
  • A fungal strain, R9, was isolated from the South Atlantic sediment sample and identified as Aspergillus fumigatus. An antifungal protein, AfAFPR9, was purified from the culture supernatant of Aspergillus fumigatus R9. AfAFPR9 was identified to be restrictocin, which is a member of the ribosome-inactivating proteins (RIPs), by MALDI-TOF-TOF-MS. AfAFPR9 displayed antifungal activity against plant pathogenic Fusarium oxysporum, Alternaria longipes, Colletotrichum gloeosporioides, Paecilomyces variotii, and Trichoderma viride at minimum inhibitory concentrations of 0.6, 0.6, 1.2, 1.2, and 2.4 μg/disc, respectively. Moreover, AfAFPR9 exhibited a certain extent of thermostability, and metal ion and denaturant tolerance. The iodoacetamide assay showed that the disulfide bridge in AfAFPR9 was indispensable for its antifungal action. The cDNA encoding for AfAFPR9 was cloned from A. fumigatus R9 by RT-PCR and heterologously expressed in E. coli. The recombinant AfAFPR9 protein exhibited obvious antifungal activity against C. gloeosporioides, T. viride, and A. longipes. These results reveal the antifungal properties of a RIP member (AfAFPR9) from marine-derived Aspergillus fumigatus and indicated its potential application in controlling plant pathogenic fungi.