• Title/Summary/Keyword: depolymerization

Search Result 136, Processing Time 0.035 seconds

Reductive Depolymerization of Bovine Thyroglobulin Multimers via Enzymatic Reduction of Protein Disulfide and Glutathiony­lated Mixed Disulfide Linkages

  • Liu Xi-Wen;Sok Dai-Eun
    • Archives of Pharmacal Research
    • /
    • v.28 no.9
    • /
    • pp.1065-1072
    • /
    • 2005
  • The nascent thyroglobulin (Tg) multimer molecule, which is generated during the initial fate of Tg in ER, undergoes the rapid reductive depolymerization. In an attempt to determine the depolymerization process, various types of Tg multimers, which were generated from deoxy­cholate-treated/reduced Tg, partially unfolded Tg or partially unfolded/reduced Tg, were subjected to various GSH (reduced glutathione) reducing systems using protein disulfide isomerase (PDI), glutathione reductase (GR), glutaredoxin or thioredoxin reductase. The Tg multimers generated from deoxycholate-treated/reduced Tg were depolymerized readily by the PDI/GSH system, which is consistent with the reductase activity of PDI. The PDI/GSH-induced depolymerization of the Tg multimers, which were generated from either partially unfolded Tg or partially unfolded/reduced Tg, required the simultaneous inclusion of glutathione reductase, which is capable of reducing glutathionylated mixed disulfide (PSSG). This suggests that PSSG was generated during the Tg multimerization stage or its depolymerization stage. In particular, the thioredoxin/thioredoxin reductase system or glutaredoxin system was also effective in depolymerizing the Tg multimers generated from the unfolded Tg. Overall, under the net GSH condition, the depolymerization of Tg multimers might be mediated by PDI, which is assisted by other reductive enzymes, and the mechanism for depolymerizing the Tg multimers differs according to the type of Tg multimer containing different degrees and types of disulfide linkages.

Depolymerization of Kraft Lignin over a Ru-Mg-Al-oxide Catalyst (Ru-Mg-Al-oxide 촉매 상에서 크라프트 리그닌의 저분자화 연구)

  • Kim, Han Ung;Limarta, Susan Olivia;Jae, Jungho
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.190-197
    • /
    • 2021
  • Kraft lignin is a by-product of the pulp and paper industry, obtained as a black liquor after the extraction of cellulose from wood through the Kraft pulping process. Right now, kraft lignin is utilized as a low-grade boiler fuel to provide heat and power but can be converted into high-calorific biofuels or high-value chemicals once the efficient catalytic depolymerization process is developed. In this work, the multi-functional catalyst of Ru-Mg-Al-oxide, which contains hydrogenation metals, acid, and base sites for the effective depolymerization of kraft lignin are prepared, and its lignin depolymerization efficiency is evaluated. In order to understand the role of different active sites in the lignin depolymerization, the three different catalysts of MgO, Mg-Al-oxide, and Ru-Mg-Al-oxide were synthesized, and their lignin depolymerization activity was compared in terms of the yield and the average molecular weight of bio-oil, as well as the yield of phenolic monomers contained in the bio-oil. Among the catalysts tested, the Ru-Mg-Al-oxide catalyst exhibited the highest yield of bio-oil and phenolic monomers due to the synergy between active sites. Furthermore, in order to maximize the extent of lignin depolymerization over the Ru-Mg-Al-oxide, the effects of reaction conditions (i.e., temperature, time, and catalyst loading amount) on the lignin depolymerization were investigated. Overall, the highest bio-oil yield of 72% and the 3.5 times higher yield of phenolic monomers than that without a catalyst were successfully achieved at 350 ℃ and 10% catalyst loading after 4 h reaction time.

Chemical Recycling of Rigid and Flexible Polyurethanes as Raw Materials

  • Lee, Dai-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.212-212
    • /
    • 2006
  • Polyurethane wastes can be depolymerized with glycols and/or amines. The depolymerization products may be recycled for the preparation of various polyurethanes. Caprolactam was employed to depolymerize Spandex fibers and the depolymerization products were evaluated as raw materials for the preparation of polyurethane elastomers. The depolymerization products were homogeneous and could be used to prepare polyurethane elastomers acceptable for various applications as binders.

  • PDF

Development of Near-Critical Water Reaction System for Utilization of Lignin as Chemical Resources

  • Eom, Hee-Jun;Hong, Yoon-Ki;Park, Young-Moo;Chung, Sang-Ho;Lee, Kwan-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.251.2-251.2
    • /
    • 2010
  • Plant biomass has been proposed to be an alternative source for petroleum-based chemical compounds. Especially, phenolic chemical compounds can be obtained from lignin by chemical depolymerization processes because lignin consists of complex aromatic polymer such as trans-p-coumaryl, coniferyl and sinapyl alcohols, etc. Phenolic chemical compounds from lignin were usually produced in super critical water. However, we applied Near-critical water (NCW) system because NCW is known as a good solvent for lignin depolymerization. Organic matter like lignin can be solved in NCW system and the system has a unique acid-base property without conventional non-eco-friendly chemicals such as sulfuric acid and sodium hydroxide. In this work, we tried to optimize the NCW depolymerization system by adjusting the processing variables such as reaction time, temperature and pressure. Moreover, the amount of additional phenol was optimized by changing the molar ratio between water and phenol. Phenol was used as capping agent to prevent re-polymerization of active fragment such as formaldehyde. Alkali-lignin was used as a starting material and characterized by a Solid State 13C-NMR, FT-IR and EA (Elemental Analysis). GC-MS analysis confirmed that o-cresol, p-cresol, anisole and 4-hydroxyphathalic acid were the main product and they were quantitatively analyzed by HPLC.

  • PDF

Depolymerization of Chitosan Using H2O2 and Decrease in Molecular Weight upon Storage Time (H2O2에 의한 저분자화 키토산의 제조와 시간경과에 따른 분자량 저하)

  • Kim, Hee-Jung;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.5 no.5
    • /
    • pp.520-528
    • /
    • 2003
  • Chitosan was depolymerized by oxidizing agent, hydrogen peroxide ($H_2O_2$) and general properties of resulting low molecular weight chitosan(LMWC) were studied. Effect of amount of $H_2O_2$, ratio of $H_2O_2$/chitosan, and reaction temperature were investigated in preparing LMWC. In addition, the reduction of molecular weight of prepared LMWC were measured after a certain time passage. Pre-swelling treatment of starting chitosan affected uniform and mild reaction of depolymerization and increased the solubility of resulting LMWC. Prepared LMWC (Mw 100,000) showed a decrease in Mw by 25-35%. Prepared LMWC(Mw 60,000-70,000) showed a decrease in Mw by 10-15% after 7 months. Therefore, this depolymerizing process can be concluded desirable in terms of stability. In addition, yellowing of pre-swelling treated chitosan upon time passage was insignificant compared with that of untreated chitosan. Therefore, pre-swelling treatment of chitosan before depolymerization would be beneficial in terms of stability of physical state.

Depolymerization of waste Poy(butylene terephthalate) by saponification (비누화반응에 의한 폐 Poly(butylene terephthalate)의 해중합)

  • Yoo, Ji-Hwan;Na, Sang-Kwan;Hong, Wan-Hae;Kim, Jung-Gyu
    • Elastomers and Composites
    • /
    • v.37 no.2
    • /
    • pp.124-133
    • /
    • 2002
  • Waste PBT powder was depolymerized by saponification under the mild temperature conditions($80{\sim}110^{\circ}C$) and atmospheric pressure. In depolymerization of PBT, sodium hydroxide was more effective than potassium hydroxide. The depolymerization increased with increasing reaction temperature and decreasing particle size. The reaction kinetics of depolymerization could be expressed by the shrinking unreacted core model without product layer, in which the surface reaction was a rate determining step. The activation energy was 98.1 KJ/mol. The recovery ratio of the TPA obtained from the depolymerized PBT particles of 85.1 and $105{\mu}m$ for 6 hours was about 95%.

Depolymerization of PET by Ethylene Glycol (에틸렌글리콜을 이용한 PET 해중합 특성)

  • Hwang, Hwidong;Kim, Bokyung;Woo, Daesik;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.683-687
    • /
    • 2009
  • A method for depolymerization of PET by catalyzed glycolysis with an excess ethylene glycol(EG) to recover bis-hydroxyethyl terephthalate(BHET) was investigated. The product was analyzed by high-performance liquid chromatography(HPLC). Effects of operation variables such as reaction temperature, reaction time, EG/PET weight ratio were examined and kinetics of the glycolysis was studied. High temperature increases the rate of depolymerization and the yield of BHET. But, repolymerization rate was also high at too high temperature and the yield at $250^{\circ}C$ was shown to be lower than that at $230^{\circ}C$. First order reaction model was proposed to describe the glycolysis reaction. Activation energies for the reaction were obtained to be 37.8 kJ/mol above $210^{\circ}C$ and 149.6 kJ/mol below $210^{\circ}C$, which shows the glycolysis reaction is a multiple reaction. A maximum yield of BHET of 71% was achieved at a reaction temperature of $230^{\circ}C$ for 6 hr with an EG/PET weight ratio 4.

Mechanical Properties of Cotton Fabric Treated with Succinic Acid - Tear Strength - (Succinic Acid 처리면포의 역학 특성 - 인열강도 -)

  • Kang, In-Sook;Bae, Hyun-Sook
    • Textile Coloration and Finishing
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • Polycarboxylics acids are used as crosslinking agents for cotton cellulose to produce durable finished press cotton fabric. It has been observed that the strength of the cotton fabric treated with polycarboxylic acids showed significant reduction as a result of the crosslinking process. The effect of acid-catalyzed depolymerization on the tear strength of cotton fabric is investigated by evaluating the cotton fabric treated by succinic acid, which does not crosslink cotton cellulose and form little ester on the cotton fabric. We find that the tear strength of cotton fabric treated with succinic acid decreases at elevated temperature due to acid-catalyzed depolymerization of cellulose. The magnitude of fabric strength reduction increases as the acid concentration increases. At a constant acid concentration, it increases as the curing temperature and time increases. It decreases as the pH of the acid solution increases. We also find that the dissociation constant of an acid also has a significant effect on the fabric strength reduction. The magnitude of fabric tear strength reduction increases as the acid dissociation constant decreases.

Controllable Movement of the Azobenzene Linked Crown Ether Conjugated Liposome

  • Seo, Eun-Seok;Kim, Soo-Hyun;Kim, Jin-Seok;Kim, Byung-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1158-1162
    • /
    • 2005
  • Drug delivery systems have been developed to reduce the side toxicity of drugs by localizing them in the site of action. But it depends on the circulation of the blood and it doesn't have the function of locomotive mechanism of itself for searching for the region of disease. However, this problem could be solved by nanobot which have the locomotive function. So, we mimic the movement of cell that can move in a human body. In this paper, to polymerize the encapsulated actin within the liposome, electroporation technique is employed. In order to optimize polymerization and depolymerization of the liposome, we compare the time of polymerization and depolymerization by concentration of crown ether. we synthesis the liposome which contain azobenzene Linked crown Ether conjugated Actin protein. Azobenze linked crown ether holds the K+ ion by exposure of UV light and this disturbs the actin polymerization. In result, UV light could control the liposome growth. Finally, we could develop the liposome robot and control the growth and degeneration of the liposome by external stimuli such s UV light. The merit of the controlling by UV light doesn't need to inject proteins which induce polymerization and depolymerization of actin protein.

  • PDF

Alyssin and Iberin in Cruciferous Vegetables Exert Anticancer Activity in HepG2 by Increasing Intracellular Reactive Oxygen Species and Tubulin Depolymerization

  • Pocasap, Piman;Weerapreeyakul, Natthida;Thumanu, Kanjana
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.540-552
    • /
    • 2019
  • To determine the chemopreventive potential of alyssin and iberin, the in vitro anticancer activities and molecular targets of isothiocyanates (ITCs) were measured and compared to sulforaphane in hepatocellular carcinoma cell HepG2. The SR-FTIR spectra observed a similar pattern vis-a-vis the biomolecular alteration amongst the ITCs-treated cells suggesting a similar mode of action. All of the ITCs in this study cause cancer cell death through both apoptosis and necrosis in concentration dependent manner ($20-80{\mu}M$). We found no interactions of any of the ITCs studied with DNA. Notwithstanding, all of the ITCs studied increased intracellular reactive oxygen species (ROS) and suppressed tubulin polymerization, which led to cell-cycle arrest in the S and $G_2/M$ phase. Alyssin possessed the most potent anticancer ability; possibly due to its ability to increase intracellular ROS rather than tubulin depolymerization. Nevertheless, the structural influence of alkyl chain length on anticancer capabilities of ITCs remains inconclusive. The results of this study indicate an optional, potent ITC (viz., alyssin) because of its underlying mechanisms against hepatic cancer. As a consequence, further selection and development of effective chemotherapeutic ITCs is recommended.