• Title/Summary/Keyword: design flood

Search Result 647, Processing Time 0.029 seconds

The Estimations of A Conceptual Time Distribution of Rainfall and Design Flood (강우의 개념적 시간분포와 설계홍수량 산정에 관한 연구)

  • Lee Byung Woon;Jang Dae Won;Kim Hung Soo;Seoh Byung Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.937-942
    • /
    • 2005
  • It is necessary to estimate the runoff hydrograph and peak flood discharge using law of probability for synthetic flood control policy and design of hydraulic structures. Rainfall analysis is needed in the process of peak flood discharge estimation and the time distribution of a design rainfall is a very important process in the analysis. In this study, we estimate design flood for a small urban basin and a rural basin of medium scale which have different travel times. The Huff method is widely used in Korea for the time distribution of design rainfall to estimate design flood. So, we use Huff method and a conceptual method which is suggested in this study for the comparative purpose. The 100-year frequency rainfall is used to estimate design flood for each basin and the design flood is compared with the existing design flood. As the result, the design flood is overestimated $14.6m^3/sec$ by Huff method and is underestimated $70.9m^3/sec$ by a conceptual method for the rural basin. For the small urban basin, the design flood is excessively overestimated $294.65m^3/sec$ by Huff method and is overestimated $173m^3/sec$ by a conceptual method. The reason of excessive overestimation by Huff method in the small urban basin is that the increased rate of rainfall intensity according to the decrease of duration is large and the duration exceeds the time of concentration when the increased rainfall intensity is concentrated in a quartile. Therefore, we suggested a conceptual method for the time distribution of design rainfall by considering the rainless period and duration. Especially, the conceptual method might be useful for the small urban basin with short concentration time which the design flood is overestimated by Huff method.

  • PDF

A Study of Design Flood Discharge Characteristics by Topographical Parameters (지형학적 인자에 따른 설계홍수량 특성에 관한 연구)

  • Park, Ki-Bum;Kim, Gyo-Sik;Hwang, Sung-Hwan;Cha, Sang-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1182-1186
    • /
    • 2006
  • The decision of design flood in river basins is very important in the aspect of flood control. The design flood of rivers was estimated according to the size and importance of basins. As the damage of floods increases more and more and the importance of defense against floods increases further, the presumption of design flood can be very important. Especially, what influences most greatly flood is rainfall. However, in spite of equal rainfall, the estimated flood differ according to the features of basins. The fact that the features of basins influence greatly the estimation of flood was confirmed by the preceding research results and experiences. However, although many rivers have their own basin features, the research on how these basin features are related to the estimation of design flood, is not yet sufficient. The purpose of this study is to identify how the design flood estimated previously by river arrangement basic plan is correlated with topography factors, and so investigate the correlation between basin topography factors and design flood in order to provide the additional information for the unmeasured basins or the middle/small river basins where their river plan is not established.

  • PDF

Design Flood Estimation by Basin Characteristics (유역특성을 이용한 설계홍수량 추정)

  • Park, Ki-Bum;Kim, Gyo-Sik;Han, Ju-Heun;Bae, Sang-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1172-1175
    • /
    • 2006
  • Generally, the estimation of design flood uses basin rainfall data, water level data, and runoff data, and so forms rainfall-runoff model. Because owing to the lack of hydrological data, the decision of representative unit hydrograph about the basin is difficult, the estimation of design flood uses topography feature data, and so presumes variables, and then applies the presumed variables to the model. In estimating design flood by using the model, it is considerably difficult to analyze how the model input variables estimated by topography factors, or the design flood data estimated previously are related to basin feature factors as the basic data, and presume design flood in the unmeasured basins or the basins where river arrangement basic plan is not established. The purpose of this study is to analyze how the design flood estimated previously by river arrangement basic plan is correlated with topography factors in presuming design flood, and so examine the presumption measures of design flood by using topography feature data and probability rainfall data.

  • PDF

Determination of Design Flood Levels for the Tidal Reach of the Han River

  • Jun, Kyungsoo;Li, Li
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.173-173
    • /
    • 2015
  • The flood water level in tidal river is determined by the joint effects of flood discharge and tidal water levels at downstream boundary. Due to the variable tidal boundary conditions, the evaluated design water levels associated with a certain flood event can be significantly different. To avoid determining of design water levels just by a certain tidal boundary condition and remove the influence of variability in boundary condition from the evaluation of design water levels, a probabilistic approach is considered in this study. This study focuses on the development of a method to evaluate the realistic design water levels in tidal river with taking into account the combined effects of river discharge and tidal level. The flood water levels are described by the joint probability of two driving forces, river discharge and tidal water levels. The developed method is applied to determine design water levels for the tidal reach of the Han River. An unsteady flow model is used to simulate the flow in the reach. To determine design water levels associated with a certain flood event, first, possible boundary conditions are obtained by sampling starting times of tidal level time series; then for each tidal boundary condition, corresponding peak water levels along the channel are computed; and finally, design water levels are determined by computing the expectations of the peak water levels. Two types of tides which are composed by different constituents are assumed (one is composed by $M_2$, and the other one is composed by $M_2$ and $M_2$) at downstream boundary, and two flood events with different maximum flood discharges are considered in this study. It is found that (a) the computed design water levels with two assumed tides have no significant difference for a certain flood event, though variability of peak water levels due to the tidal effect is considerably different; (b) tidal effect can reach to the Jamsil submerged weir and the effect is obvious in the downstream reach of the Singok submerged weir; (c) in the tidally affected reach, the variability of peak water levels due to the tidal effect is greater if the maximum flood discharge is smaller.

  • PDF

Analysis of Design Flood Change for the Small to Medium Size Rivers in Gyeonggi-do (경기도 중.소하천의 계획홍수량 변화 분석)

  • Park, Sun-Hee;Won, Jin-Young;Song, Ju-Il;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.143-149
    • /
    • 2010
  • The river master plan was established every 10 years in Korea. The basin characteristics of 62 small and medium size rivers of which master plans were recently established during the past three years in Gyeonggi-do were investigated, and design rainfalls and design floods in the past and the latest were compared and analyzed. It was predicted that basin data and flood estimating method changed design flood. The quantitative amount of design floods were analyzed for 6 basins like Gungunchen etc. As the results, the increasing factors of design flood were the application of critical duration time, temporal time of rainfall and the increase of CN value. The decreasing factors of design flood were the application of Huff's rainfall distribution instead of Mononobe one and the ARF. The application of critical duration time increased flood about 60% whereas the application of Huff's rainfall distribution method estimated less flood than Mononobe about 62%. Considering critical duration time and changing rainfall distribution were the most important factors of increasing or decreasing design flood. However, trends of flood variation were differently analyzed by factors in 6 basins because characteristics of topography, weather, hydrology and hydraulic were different, now that correlations were not found between factors and flood variation. Flood variation is evaluated by complex effects of factors so new flood recalculated by reasonable methods should be considered as design flood.

Landscape Planting Design for Yeoyido Flood Plain Park in Han-river (한강 여의도지구 수변공원 식재설계)

  • 이준복
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.5
    • /
    • pp.86-95
    • /
    • 2003
  • It had been strictly prohibited to plant in waterway according to Korea laws and regulations. It was then made possible to plant by the modification law and regulation of 10/30/1997. In 2000, the Seoul metropolis government planted in the Yeoyido flood plain park in Han river by way of showing the model case. This planting design is for the Yeoyido flood plain park along the Han river, in Seoul. The design requirements were to create a pleasant rest area, to improve the surrounding landscape, and to create diverse ecological habitats by planting within the stability of flood flow. This design emphasizes the following design requirements that has positive effect on stabilizing flood flow. First, planting suitable in a area was determined by the speed of a current of less than 0.7m/sec under various numerical value simulations. Second, plants were selected in existing trees of the present and the past Han river, as well as the questionnaire results from landscape professional engineers and professors. Shade plants were planted in the large visiting areas so as to offer pleasant shade in the summer, the ecological planting pattern was applied in the area with low speed of flood flow, so as to aid the restoration of the natural ecological environment. It was found that the foresaid planting design verified the stability of flood flow and wind by overturn limit moment calculation. It is expected that this plan would serve environmentally friendly planting plans in flood plain park.

Design Flood Estimation in the Hwangguji River Watershed under Climate and Land Use Changes Scenario (기후변화 및 토지이용변화 시나리오를 고려한 황구지천 유역의 설계홍수량 평가)

  • Kim, Jihye;Park, Jihoon;Song, Jung-Hun;Jun, Sang Min;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • Extreme floods occur more often recently as the frequency of extreme storm events increase due to the climate change. Because the extreme flood exceeding the design flood can cause large-scale disasters, it is important to predict and prepare for the future extreme flood. Flood flow is affected by two main factors; rainfall and land use. To predict the future extreme flood, both changes in rainfall due to the climate change and land use should be considered. The objective of this study was to simulate the future design flood in the Hwangguji river watershed, South Korea. The climate and land use change scenarios were derived from the representative concentration pathways (RCP) 4.5 and 8.5 scenarios. Conversion of land use and its effects (CLUE) and hydrologic modelling system (HEC-HMS) models were used to simulate the land use change and design flood, respectively. Design floods of 100-year and 200-year for 2040, 2070, and 2100 under the RCP4.5 and 8.5 scenarios were calculated and analyzed. The land use change simulation described that the urban area would increase, while forest would decrease from 2010 to 2100 for both the RCP4.5 and 8.5 scenarios. The overall changes in design floods from 2010 to 2100 were similar to those of probable rainfalls. However, the impact of land use change on design flood was negligible because the increase rate of probable rainfall was much larger than that of curve number (CN) and impervious area.

Estimation of Design Discharge Considering Nonstationarity for River Restoration in the Mokgamcheon (목감천 복원설계를 위한 비정상성을 고려한 설계홍수량의 산정)

  • Lee, Kil Seong;Oh, Jin-Ho;Park, Kidoo;Sung, Jang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1361-1375
    • /
    • 2013
  • The design flow considering nonstationarity is estimated to determine the design flood related to hydraulic structure quantitatively based on the design process for stream restoration in the Mokgamcheon watershed proposed by Lee et al. (2011). The purpose of this research is to suggest new ways that the design flood was calculated considering nonstationarity at the Mokgamcheon watershed. Storm-unit hydrograph method to calculate design flood and direct frequency analysis were applied and nonstationarity was considered for the frequency analysis through extRemes toolkit developed at NCAR (National Center for Atmospheric Research). Although the method of direct flood frequency analysis due to dealing with flowrates directly has a more reliable than strom-unit hydrograph method, as a result, the method of direct flood frequency analysis underestimated the design flood than strom-unit hydrograph method due to the characteristics of the flow data. Therefore, the flood of storm-unit hydrograph method (100 years frequency) was determined as the design flood in the Mokgamcheon watershed.

Calculation of optimal design flood using cost-benefit analysis with uncertainty (불확실성이 고려된 비용-편익분석 기법을 도입한 최적설계홍수량 산정)

  • Kim, Sang Ug;Choi, Kwang Bae
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.405-419
    • /
    • 2022
  • Flood frequency analysis commonly used to design the hydraulic structures to minimize flood damage includes uncertainty. Therefore, the most appropriate design flood within a uncertainty should be selected in the final stage of a hydraulic structure, but related studies were rarely carried out. The total expected cost function introduced into the flood frequency analysis is a new approach for determining the optimal design flood. This procedure has been used as UNCODE (UNcertainty COmpliant DEsign), but the application has not yet been introduced in South Korea. This study introduced the mathematical procedure of UNCODE and calculated the optimal design flood using the annual maximum inflow of hydroelectric dams located in the Bukhan River system and results were compared with that of the existing flood frequency. The parameter uncertainty was considered in the total expected cost function using the Gumbel and the GEV distribution, and the Metropolis-Hastings algorithm was used to sample the parameters. In this study, cost function and damage function were assumed to be a first-order linear function. It was found that the medians of the optimal design flood for 4 Hydroelectric dams, 2 probability distributions, and 2 return periods were calculated to be somewhat larger than the design flood by the existing flood frequency analysis. In the future, it is needed to develop the practical approximated procedure to UNCODE.

Comparative Study of Flow Profiles & Discharge due to Rainfall Frequency Analysis (강우빈도 해석을 통한 하천 수리$\cdot$수문량 비교 연구)

  • Seo Kyu Woo;Lee In Rock;Won Chang Hee;Shim Bong Joo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1533-1537
    • /
    • 2005
  • The recent rainfall has happened to exceed the design rainfall after 1990 often, due to the characteristic of the rain to be changed. So, it is failing the ability safety of flood defense equipments to exist. This study analyzed the rainfall of Busan in 2003 since 1961 through the FARD2002(Frequency Analysis of Rainfall Duration). The result is equal to the thing which the design rainfall increased a little since 1991. The change of design rainfall created the result to be a flood discharge increase. This study investigated about the impact to influence on the river bank according to the change of flood discharge, the rainfall pattern change as well. This study used the program of HEC-RAS with HEC-HMS and calculated flood discharge with flood level of river. The result is equal to the thing which the computation became a flood level which exceed 50year(River design criteria-Korea water resources association 2002) criteria with 30year(River establishment criteria-Ministry of construction & transportation 1993), because of an area of impermeability increased of model basin.

  • PDF