• Title/Summary/Keyword: design rainfall

Search Result 694, Processing Time 0.029 seconds

Spatial Interpolation of Rainfall by Areal Reduction Factor (ARF) Analysis for Hancheon Watershed

  • Kar, Kanak Kanti;Yang, Sung Kee;Lee, Junho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.427-427
    • /
    • 2015
  • The storm water management and drainage relation are the key variable that plays a vital role on hydrological design and risk analysis. These require knowledge about spatial variability over a specified area. Generally, design rainfall values are expressed from the fixed point rainfall, which is depth at a specific location. Concurrently, determine the areal rainfall amount is also very important. Therefore, a spatial rainfall interpolation (point rainfall converting to areal rainfall) can be solved by areal reduction factor (ARF) estimation. In mainland of South Korea, for dam design and its operation, public safety, other surface water projects concerned about ARF for extreme hydrological events. In spite of the long term average rainfall (2,061 mm) and increasing extreme rainfall events, ARF estimation is also essential for Jeju Island's water control structures. To meet up this purpose, five fixed rainfall stations of automatic weather stations (AWS) near the "Hancheon Stream Watershed" area has been considered and more than 50 years of high quality rainfall data have been analyzed for estimating design rainfall. The relationship approach for the 24 hour design storm is assessed based on ARF. Furthermore, this presentation will provide an outline of ARF standards that can be used to assist the decision makers and water resources engineers for other streams of Jeju Island.

  • PDF

Estimation of Drought Rainfall According to Consecutive Duration and Return Period Using Probability Distribution (확률분포에 의한 지속기간 및 빈도별 가뭄우량 추정)

  • Lee, Soon Hyuk;Maeng, Sung Jin;Ryoo, Kyong Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1103-1106
    • /
    • 2004
  • The objective of this study is to induce the design drought rainfall by the methodology of L-moment including testing homogeneity, independence and outlier of the data of annual minimum monthly rainfall in 57 rainfall stations in Korea in terms of consecutive duration for 1, 2, 4, 6, 9 and 12 months. To select appropriate distribution of the data for annual minimum monthy rainfall by rainfall station, the distribution of generalized extreme value (GEV), generalized logistic (GLO) as well as that of generalized pareto (GPA) are applied and the appropriateness of the applied GEV, GLO, and GPA distribution is judged by L-moment ratio diagram and Kolmogorov-Smirnov (K-S) test. As for the annual minimum monthly rainfall measured by rainfall station and that stimulated by Monte Carlo techniques, the parameters of the appropriately selected GEV and GPA distributions are calculated by the methodology of L-moment and the design drought rainfall is induced. Through the comparative analysis of design drought rainfall induced by GEV and GPA distribution by rainfall station, the optimal design drought rainfall by rainfall station is provided.

  • PDF

The Estimations of A Conceptual Time Distribution of Rainfall and Design Flood (강우의 개념적 시간분포와 설계홍수량 산정에 관한 연구)

  • Lee Byung Woon;Jang Dae Won;Kim Hung Soo;Seoh Byung Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.937-942
    • /
    • 2005
  • It is necessary to estimate the runoff hydrograph and peak flood discharge using law of probability for synthetic flood control policy and design of hydraulic structures. Rainfall analysis is needed in the process of peak flood discharge estimation and the time distribution of a design rainfall is a very important process in the analysis. In this study, we estimate design flood for a small urban basin and a rural basin of medium scale which have different travel times. The Huff method is widely used in Korea for the time distribution of design rainfall to estimate design flood. So, we use Huff method and a conceptual method which is suggested in this study for the comparative purpose. The 100-year frequency rainfall is used to estimate design flood for each basin and the design flood is compared with the existing design flood. As the result, the design flood is overestimated $14.6m^3/sec$ by Huff method and is underestimated $70.9m^3/sec$ by a conceptual method for the rural basin. For the small urban basin, the design flood is excessively overestimated $294.65m^3/sec$ by Huff method and is overestimated $173m^3/sec$ by a conceptual method. The reason of excessive overestimation by Huff method in the small urban basin is that the increased rate of rainfall intensity according to the decrease of duration is large and the duration exceeds the time of concentration when the increased rainfall intensity is concentrated in a quartile. Therefore, we suggested a conceptual method for the time distribution of design rainfall by considering the rainless period and duration. Especially, the conceptual method might be useful for the small urban basin with short concentration time which the design flood is overestimated by Huff method.

  • PDF

Variation of design flood according to the temporal resolution and periods of rainfall (강우의 시간해상도와 자료기간에 따른 설계홍수량의 변동성)

  • Kim, Min-Seok;Lee, Jung-Hwan;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.599-606
    • /
    • 2018
  • Most hydrological analysis such as probability rainfall and rainfall time distributions have typically carried out based on hourly rainfall and rainfall - runoff analysis have carried out by applying different periods of rainfall time distribution and probability rainfall. In this study, to quantify the change of design flood due to the data type (hourly and minutely rainfall data) and the probability rainfall and application of different data period to the rainfall time distribution, probability rainfall is calculated by point frequency analysis according to data type and period and rainfall time distribution was calculated by Huff's quartile distributions. In addition, the change analysis of design flood was carried out by rainfall - runoff analysis applying different data periods of design rainfall time distribution. and probability rainfall. As a result, rainfall analysis using minute rainfall data was more accurate and effective than using hourly rainfall data. And the design flood calculated by applying different data period of rainfall time distribution and probability rainfall made a large difference than by applying different data type. It is expected that this will contribute to the hydrological analysis using minutely rainfall.

An Analysis on Hydrologic Characteristics of Design Rainfall for the Design of Hydraulic Structure (수공구조물 설계를 위한 설계강우의 수문학적 특성 분석)

  • Lee, Jeong-Sik;Lee, Jae-Jun;Park, Jong-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.67-80
    • /
    • 2001
  • This study is to propose temporal pattern of design rainfall which causes maximum peak discharge and to analyze the variation in peak discharge according to design rainfall durations. In this study, the Mononobe, the Yen and Chow triangular, the Huff's 4th quartiles and the Keifer and Chu methods are applied to estimate the proper temporal pattern of design rainfall and three rainfall-runoff models such as SCS, Nakayasu, and Clark methods are used to estimate the runoff hydrograph. And to examine the variability of peak discharge, the hydrologic characteristics from the rainfall-runoff models to which uniform rainfall intensity is applied are used as the standard values. The type of temporal pattern of design rainfall which causes maximum peak discharge in both of the watersheds and the rainfall-runoff models has resulted in Yen and Chow distribution method with the dimensionless vague of 0.75. On the basis of determined temporal pattern, the examination of the variability of peak discharge according to design rainfall durations shows that design rainfall duration varies greatly with the types of probable intensity formula, and the variation of peak discharge is more affected by the types of probable intensity formula and I-D-F currie than rainfall-runoff models.

  • PDF

Applicability of Huff Model & ABM Method for Discharge Capacity of Sewer Pipe (하수관거 통수능 해석을 위한 Huff 모형과 ABM 법의 적용성 분석)

  • Hyun, Inhwan;Jeon, SeungHui;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.4
    • /
    • pp.229-237
    • /
    • 2022
  • The sewer capacity design have been based on the Huff model or the rational equation in South Korea and often failed to determine optimal capacity, resulting in frequent urban flooding or over-sizing. A time distribution of rainfall (i.e., Huff or ABM method) could be used instead of a rainfall hyetograph obtained from statistical analysis of previous rainfalls. In this study, the Huff method and the ABM method, which predict the time distribution of rain intensity, which are widely used to calculate sewage pipe drainage capacity using the SWMM, were compared with the standard rainfall intensity hyetograph of Seoul. If the rainfall duration was 30 minutes to 180 minutes, the rainfall intensity value calculated by the Huff model tended to be less than the rainfall intensity value of the standard rainfall intensity in the initial 5-10 minutes. As a result, more than 10% to 30% of under-design would be made. In addition, the rainfall intensity value calculated by the Huff model from the section excluding the initial 5-10 minutes of rainfall to the rainfall duration was calculated larger than the value using the standard rainfall intensity equation, which would result in an over-design of 10% to 30%. In the case of a relatively long rainfall duration of 360 minutes (6 hours) to 1,440 minutes (24 hours), it showed an lower rainfall intensity of 60 to 90% in the early stages of rainfall, but the problem of under-design had been solved as the rainfall duration time had elapsed. On the other hand, in the alternating block method (ABM) method, it was found that the rainfall intensity at the entire period at each assumed rainfall duration accurately matched the standard rainfall intensity hyetograph of Seoul.

Estimation of Design Rainfall Based on Climate Change Scenario in Jeju Island (기후변화 시나리오를 고려한 제주도 확률강우량 산정)

  • Lee, Jun-Ho;Yang, Sung-Kee;Jung, Woo-Yul;Yang, Won-Seok
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.383-391
    • /
    • 2015
  • As occurrence of gradually increasing extreme temperature events in Jeju Island, a hybrid downscaling technique that simultaneously applies by dynamical method and statistical method has implemented on design rainfall in order to reduce flood damages from severe storms and typhoons.As a result of computation, Case 1 shows a strong tendency to excessively compute rainfall, which is continuously increasing. While Case 2 showed similar trend as Case 1, low design rainfall has computed by rainfall in A1B scenario. Based on the design rainfall computation method mainly used in Preventive Disaster System through Pre-disaster Effect Examination System and Basic Plan for River of Jeju Island which are considering climatic change for selecting 50-year and 100-year frequencies. Case 3 selecting for Jeju rain gage station and Case 1 for Seogwipo rain gage station. The results were different for each rain gage station because of difference in rainfall characteristics according to recent climatic change, and the risk of currently known design rainfall can be increased in near future.

Time Distribution Characteristics of an Annual Maximum Rainfall According to Rainfall Durations using Huff's Method (Huff의 4분위법을 이용한 지속기간별 연 최대치 강우의 시간분포 특성연구)

  • Lee, Jong-Kyu;Chu, Hyun-Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.519-528
    • /
    • 2006
  • In the construction of hydraulic structures deciding a design flood is one of the most important works. It should be especially noted that the time distribution of the design rainfall method makes a significant effect on the results of the design flood. Thus, choosing an appropriate time distribution method for the design rainfall is a very important process. In recent years, Huff's method is usually used in Korea. This method presents dimensionless rainfall-time cumulative curves, which are made through the analyses of storm data. In this study, the annual maximum rainfall data, from 1961 to 2004 were analyzed to make the dimensionless rainfall-time cumulative curves and hyetographs in Seoul. The results were compared with the "Regional Time Distribution of the Design Rainfall", (KICT, 1989 and MCT, 2000). As a result, the dimensionless rainfall-time cumulative curves are smoother than Huff's results when the duration of an annual maximum rainfall is short. In addition, the curves are similar with the Huff's results as the duration is longer.

Rainfall analysis considering watershed characteristics and temporal-spatial characteristics of heavy rainfall (집중호우의 시·공간적 특성과 유역특성을 고려한 강우분석 연구)

  • Kim, Min-Seok;Choi, Ji-Hyeok;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.739-745
    • /
    • 2018
  • Recently, the incidence of heavy rainfall is increasing. Therefore, a rainfall analysis should be performed considering increasing frequency. The current rainfall analysis for hydrologic design use the hourly rainfall data of ASOS with a density of 36 km on the Korean Peninsula. Therefore, medium and small scale watershed included Thiessen network at the same rainfall point are analyzed with the same design rainfall and time distribution. This causes problem that the watershed characteristics can not be considered. In addition, there is a problem that the temporal-spatial change of the heavy rainfall occurring in the range of 10~20 km can not be considered. In this study, Author estimated design rainfall considering heavy rainfall using minutely rainfall data of AWS, which are relatively dense than ASOS. Also, author analyzed the time distribution and runoff of each case to estimate the huff's method suitable for the watershed. The research result will contribute to the estimation of the design hydrologic data considering the heavy rainfall and watershed characteristics.

Analysis of Storm Event Characteristics for Stormwater Best Management Practices Design (강우유출수 관리시설의 설계를 위한 강우사상 특성 분석)

  • Kim, Hak Kwan;Ji, Hyun Seo;Jang, Sun Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.73-80
    • /
    • 2017
  • The objective of this study is to investigate whether the daily rainfall depth derived from daily data represents the event rainfall depth derived from hourly data. For analysis, the 85th, 90th, and 95th percentile daily rainfall depths were first computed using daily rainfall data (1986~2015) collected at 63 weather stations. In addition, the storm event was separated by the interevent time definition (IETD) of 6, 12, 18, and 24 hr using hourly rainfall data. Based on the separated storm events, the 85th, 90th, and 95th percentile event rainfall depths were calculated and compared with the using hourly rainfall data with the 85th, 90th, and 95th percentile daily rainfall depths. The event rainfall depths computed using the IETD were greater than the daily rainfall depths. The difference between the event rainfall depth and the daily rainfall depth affects the design and size of the facility for controlling the stormwater. Therefore, the designer and policy decision-maker in designing the stormwater best management practices need to take into account the difference generated by the difference of the used rainfall data and the selected IETD.