• Title/Summary/Keyword: diagonally dominant matrix

Search Result 7, Processing Time 0.022 seconds

ON THE CONVERGENCE OF PARALLEL GAOR METHOD FOR BLOCK DIAGONALLY DOMINANT MATRICES

  • Liu, Qingbing
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1319-1330
    • /
    • 2009
  • In [2] A.Hadjidimos proposed the generalized accelerated over-relaxation (GAOR) methods which generalize the basic iterative method for the solution of linear systems. In this paper we consider the convergence of the two parallel accelerated generalized AOR iterative methods and obtain some convergence theorems for the case when the coefficient matrix A is a block diagonally dominant matrix or a generalized block diagonally dominant matrix.

  • PDF

A NEW CRITERION FOR SUBDIVISION ITERATION DETERMINATION OF GENERALIZED STRICTLY DIAGONALLY DOMINANT MATRICES

  • HUI SHI;XI CHEN;QING TUO;LE WU
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.5_6
    • /
    • pp.303-313
    • /
    • 2023
  • Generalized strictly diagonally dominant matrices have a wide range of applications in matrix theory and practical applications, so it is of great theoretical and practical value to study their numerical determination methods. In this paper, we study the numerical determination of generalized strictly diagonally dominant matrices by using the properties of generalized strictly diagonally dominant matrices. We obtain a new criterion for subdivision iteration determination of the generalized strictly diagonally dominant matrices by subdividing the set of non-prevailing row indices and constructing new iteration factors for the set of predominant row indices, new elements of the positive diagonal factors are derived. Advantages are illustrated by numerical examples.

RECOGNITION OF STRONGLY CONNECTED COMPONENTS BY THE LOCATION OF NONZERO ELEMENTS OCCURRING IN C(G) = (D - A(G))-1

  • Kim, Koon-Chan;Kang, Young-Yug
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.125-135
    • /
    • 2004
  • One of the intriguing and fundamental algorithmic graph problems is the computation of the strongly connected components of a directed graph G. In this paper we first introduce a simple procedure for determining the location of the nonzero elements occurring in $B^{-1}$ without fully inverting B, where EB\;{\equiv}\;(b_{ij)\;and\;B^T$ are diagonally dominant matrices with $b_{ii}\;>\;0$ for all i and $b_{ij}\;{\leq}\;0$, for $i\;{\neq}\;j$, and then, as an application, show that all of the strongly connected components of a directed graph G can be recognized by the location of the nonzero elements occurring in the matrix $C(G)\;=\;(D\;-\;A(G))^{-1}$. Here A(G) is an adjacency matrix of G and D is an arbitrary scalar matrix such that (D - A(G)) becomes a diagonally dominant matrix.

On the Error Bound of the Approximate Solution of a Nonclassically Damped Linear System under Periodic Excitations

  • Hwang, Jai-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.45-52
    • /
    • 1996
  • One common procedure in the approximate solution of a nonclassically damped linear system is to neglect the off-diagonal elements of the normalized damping matrix. A tight error bound, which can be computed with relative ease, is given for this method of solution. The role that modal coupling plays in the control of error is clarified. If the normalized damping matrix is strongly diagonally dominant, it is shown that adequate frequency separation is not necessary to ensure small errors.

  • PDF

ADAPTIVE STABILIZATION OF NON NECESSARILY INVERSELY STABLE CONTINUOUS-TIME SYSTEMS BY USING ESTIMATION MODIFICATION WITHOUT USING HYSTERESIS FUNCTION

  • Sen, M.De La
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.29-53
    • /
    • 2001
  • This note presents a an indirect adaptive control scheme for first-order continuous-time systems. The estimated plant model is controllable and then the adaptive scheme is free from singularities. The singularities are avoided through a modification of the estimated plant parameter vector so that its associated Sylvester matrix is guaranteed to be nonsingular. That properties is achieved by ensuring that the absolute value of its determinant does not lie below a positive threshold. A modification scheme based on the achievement of a modified diagonally dominant Sylvester matrix of the parameter estimates is also given as an alternative method. This diagonal dominance is achieved through estimates modification as a way to guarantee the controllability of the modified estimated model when a controllability measure of the ‘a priori’ estimated model fails. In both schemes, the use of a hysteresis switching function for the modification of the estimates is not required to ensure the nonsingularity of the Sylvester matrix of the estimates.

  • PDF

Development of 3-D Flow Analysis Code Using Unstructured Grid System (I) - Numerical Method - (비정렬격자계를 사용하는 3차원 유동해석코드 개발 (I) - 수치해석방법 -)

  • Kim, Jong-Tae;Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1049-1056
    • /
    • 2005
  • A conservative pressure-based finite-volume numerical method has been developed for computing flow and heat transfer by using an unstructured grid system. The method admits arbitrary convex polyhedra. Care is taken in the discretization and solution procedures to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are found by a novel second-order accurate spatial discretization. Momentum interpolation is used to prevent pressure checkerboarding and the SIMPLE algorithm is used for pressure-velocity coupling. The resulting set of coupled nonlinear algebraic equations is solved by employing a segregated approach, leading to a decoupled set of linear algebraic equations fer each dependent variable, with a sparse diagonally dominant coefficient matrix. These equations are solved by an iterative preconditioned conjugate gradient solver which retains the sparsity of the coefficient matrix, thus achieving a very efficient use of computer resources.