• 제목/요약/키워드: dielectric constant fillers

Search Result 24, Processing Time 0.028 seconds

A Review on Recent Development and Applications of Dielectric Elastomers

  • Seo, Jin Sung;Kim, Dohyeon;Hwang, Sosan;Shim, Sang Eun
    • Elastomers and Composites
    • /
    • v.56 no.2
    • /
    • pp.57-64
    • /
    • 2021
  • This paper reviews recent developments and applications of dielectric elastomers (DEs) and suggests various techniques to improve DE properties. DEs as smart materials are a variety of electro-active polymers (EAPs) that convert electrical energy into mechanical energy and cause a large deformation when a voltage is applied. The dielectric constant, modulus, and dielectric loss of DEs determine the efficiency of deformation. Among these, the dielectric constant significantly affects their performance. Therefore, various recent approaches to improve the dielectric constant are reviewed, including the enhancement of polarization, introduction of microporous structures in the matrix, and introduction of ferroelectric fillers. Furthermore, the basic principles of DEs are examined, as well as their various applications such as actuators, generators, sensors, and artificial muscles.

Electrical Properties of Nozzle for Electrical Apparatus (전력기기용 Nozzle의 전기적 특성)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.7-10
    • /
    • 2004
  • This paper presents the electrical properties of PTFE nozzle for a electrical apparatus. In the arcing environment in a electrical apparatus, radiation is considered to be the major energy transport mechanism from the arc to the wall. The fraction of the radiation power is emitted out of the arc and reaches the nozzle wall, causing ablation at the surface and in the depth of the wall. The energy concentration in the material leads to the depolymerization and eventually leads to the generation of decomposed gas as well as some isolated carbon particles. Adding some fillers into PTFE is expected to be efficient for improving the endurability against radiation. In this experiment, three kinds of fillers that have endurance in the high temperature environment were added into PTFE. Light reflectance of fillers was investigated. Dielectric constan and dissipation factor of PTFE composites were investigated. Dielectric constant and dissipation factor of the PTFE composites increased with increasing contents of the fillers.

  • PDF

Estimation of Electric Properties of Insulating Silicone Rubbers Added Reinforcing Fillers (보강성 충전제를 첨가한 절연용 실리콘 고무의 전기 특성 평가)

  • Lee, Sung-Ill
    • Elastomers and Composites
    • /
    • v.32 no.5
    • /
    • pp.309-317
    • /
    • 1997
  • Estimation of the dielectric properties of insulating silicone rubbers added reinforcing fillers $(SiO_2,\;0{\sim}140phr)$ are very important to investigate the polymer structure. The characteristies of the dielectric absorption in insulating silicone rubbers were studied in the frequency range from 30Hz to 1MHz at the temperature range from $0{\sim}170^{\circ}C$. In the case of non-filled specimen, the dielectric loss is due to the syloxane which is the main chain of silicone rubber at the low temperature below $50^{\circ}C$ and the frequency at 330Hz, and is due to methyl and vinyl radical over the frequency of 1MHz. It is confirmed that the methyl radical or the vinyl radical becomes thermal oxidation at the high temperature over $100^{\circ}C$ and then the dielectric disperssing owing to the carboxyl radical Is appeared. In the case of filled specimen, the dielectric constant is in creased with the additives of reinforcing fillers due to the effect of interfacial polarization explained by MWS(Maxwell-Wagner-Sillars)'s law. The dielectric loss is decreased by the disturbance of reinforcing fillers that is permeated between networks.

  • PDF

Dielectric Properties of Epoxy/Micro/Nano Alumina Multi-Composites (에폭시/마이크로/나노알루미나 혼합된 멀티-콤포지트의 유전 특성)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.565-570
    • /
    • 2016
  • In this work, the complex permittivity of epoxy resins is measured. Epoxy resins, epoxy with micro size fillers and epoxy with micro+nano alumina composites have been evaluated for dielectric properties according to frequency variation. The dielectric spectroscopy measurement and analyses are carried out in the frequency range of $10^{-2}Hz$ to 1MHz and constant to room temperature. The results of dielectric loss suggest that significant improvement in the electrical performance can be expected by using samples containing nano and micro fillers mixture when compared to materials containing only microfillers. As the result, we verified the specific characteristics of dielectric permittivity and dielectric loss namely, relative permittivity become low with improving dispersibility of nano+micro mixture composites and become rise with agglomerate of nano particles.

Electrical and Thermal Characterization of Organic Varnish Filled with ZrO2 Nano Filler Used in Electrical Machines

  • Selvaraj, D. Edison;Vijayaraj, R.;Sugumaran, C. Pugazhendhi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1700-1711
    • /
    • 2015
  • In the last decade it has been witnessed significant developments in the area of nano particles and nano scale fillers on electrical, thermal, and mechanical properties of polymeric materials such as resins, varnishes, enamel and bakelites. The electric and thermal properties were more important in the electrical equipments for both steady state and transient state conditions. This paper deals with the characterization of the electric and thermal properties of the pure varnish and zirconia (ZrO2) filler mixed varnish. The electric properties such as dielectric loss (tan δ), dielectric constant (ε), dielectric strength and partial discharge voltage were analyzed and detailed for different samples. It was observed that zirconia nano filler mixed varnish has the superior dielectric and thermal properties when compared to those of standard varnish. It has shown that at power frequency the 1wt% nano composite sample has the higher permittivity value when compared to other samples. It has been examined that the 1wt% sample was having higher inception and extinction voltages when compared to other samples. It has been observed that 1wt% sample has higher dielectric strength when compared with other samples. There has been an improvement of thermal property by adding few weight percent of zirconia nano fillers. There was not much variation in glass transition among the nano mixed composites. The weight loss was improved at 1wt% of the zirconia nano fillers.

Various Filler Added CaO-Al2O3-SiO2 Glass Composites for LTCC Substrate Applications (LTCC 기판재료 응용을 위한 다양한 충전제 함유 CaO-Al2O3-SiO2 유리복합체 연구)

  • Kim, Kwan-Soo;Jang, Ho-Soon;Shin, Hyun-Ho;Kim, In-Tae;Kim, Shin;Han, Yong-Hyun;Yoon, Sang-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.323-329
    • /
    • 2009
  • Influences of ceramic filler types and dose on the sintering, phase evolution, and dielectric properties of ceramic/CaO-$Al_2O_3-SiO_2$ glass composites were investigated. All of the specimens were sintered at $900^{\circ}C$ for 2 h, which conditions are required by the lowtemperature co-firing ceramic (LTCC) technology. Ceramic fillers of $Al_2O_3,\;SiO_2$, kaolin, and wollastonite were used. The addition of $Al_2O_3$ filler yielded the crystalline phases of alumina and wollastonite, and the densification over 95% of the relative density was achieved up to 50 wt% addition of the filler. For the cases of the fillers of $SiO_2$, kaolin, and wollastonite, crystalline phases of quartz, mullite, and wollastonite formed, while the densification decreased monotonically with the filler addition. In overall, all the investigated fillers with 10 wt% addition resulted in a reasonable sintering (over 95 %) and low dielectric constants (less than 6), demonstrating the feasibility of the investigated composites for application to a LTCC substrate material with a low dielectric constant.

Dielectric Properties of EPDM/ATH/Clay Compounds (EPDM/ATH/Clay 파운드의 절연특성)

  • Lee, Chul-Ho;Lee, Heon-Ju;Jeon, Young-Jun;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1648-1650
    • /
    • 1999
  • In the present study. we investigated the role of fillers, alumina trihydrate (ATH) and calcined clay, on the mechanical and electrical properties of EPDM compounds. Mechanical properties and tracking resistance improved with increasing ATH fillers. whereas volume resistivity, tan$\delta$ and dielectric constant decreased when ATH was replaced by clay filler. Futhermore, it was more prominent in $90^{\circ}C$ hot water test. This was explained with polarity of ATH, and the smaller particle size of ATH filler than clay filler.

  • PDF

Study on the Fabrication of Embedded Capacitor Films for PWB substrate (PWB 기판용 Embedded Capacitor필름 제작에 관한 연구)

  • 이주연;조성동;백경욱
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.21-27
    • /
    • 2001
  • Epoxy/BaTiO$_3$composite film type capacitors with excellent stability at room temperature, uniform thickness, and electrical properties over a large area were successfully fabricated. We fabricated composite capacitor films with good film formation capability and easy process ability, from ACF-resin as a matrix and two kinds of BaTiO$_3$powders as fillers to increase the dielectric constant of the composite film. The crystal structure of the powders and its effects on dielectric constant of the films were investigated by X-ray diffraction. DSC and dielectric properties tests were conducted to decide the right curing temperature and the optimum amount of the curing agent. As a result, the capacitors of $7{\mu}{\textrm}{m}$ thick film with 10nF/cm2 and low leakage current were successfully demonstrated.

  • PDF

Effects of Ceramics on Dielectric Properties of Polystyrene / Ceramics Composites at Microwave Frequencies

  • Jeon, Chang-Jun;Kim, Eung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.257-262
    • /
    • 2011
  • Dependencies of dielectric properties on $MgTa_2O_6$, $MgNb_2O_6$, and $MgWO_4$ (Mg-based ceramics) fillers of the polystyrene (PS) matrix composites were investigated as a function of frequency. With increasing frequency from 1 GHz to 7.3 GHz, the dielectric constant (K) of the composites was not changed significantly, while the dielectric loss (tan${\delta}$) of the composites was slightly decreased. The K, tan${\delta}$, and temperature coefficient of resonant frequency (TCF) of the composites were dependent on the type and amount of ceramics at 11 GHz. Also, several theoretical models have been employed to predict the effective dielectric constant of the composites and the results were compared with experimental data. Typically, a K value of 6.67, tan${\delta}$ of $0.56{\times}10^{-3}$, and TCF of -4.99 $ppm/^{\circ}C$ were obtained for the PS composites with 0.4 volume fraction of $MgNb_2O_6$ at 11 GHz.

Acoustic Performance Enhancement in PVDF Speakers by Using Buckled Nanospring Carbon Nanotubes

  • Ham, Sora;Lee, Yun Jae;Kim, Jung-Hyuk;Kim, Sung-Ryong;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.360-365
    • /
    • 2019
  • A polyvinylidene fluoride (PVDF)-based film speaker is successfully fabricated with enhanced bass sound by incorporating buckled nanospring carbon nanotubes (NS-CNTs) as fillers. Various concentrations up to 1-7 wt% of uniformly dispersed buckled NS-CNTs are loaded to increase the beta (β)-phase fraction, crystallinity, and dielectric constant of the speaker, and this results in the bass part enhancement of about 19 dB full scale (dBFS) at 7 wt% filler loading of the piezoelectric film speaker.