• Title/Summary/Keyword: differential signaling

Search Result 183, Processing Time 0.022 seconds

EMI Issues in Pseudo-Differential Signaling for SDRAM Interface

  • Jang, Young-Jae;Yi, Il-Min;Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.455-462
    • /
    • 2015
  • H-field EMI measurements have been performed for the single-ended, the differential, and the pseudo-differential signaling on a 11" FR4 microstrip line. The pseudo-differential signaling reduces EMI by more than 10 dB compared to the single-ended signaling if the delay mismatch is lower than 5% of a period for a 3 GHz clock signal. Empirical H-field equations for both differential and single-ended signaling showed fair agreements with measurements.

A Full-Wave Model Analysis on Noise Reduction and Impedance of Power-Bus Cavity with Differential Signaling

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.197-202
    • /
    • 2006
  • This paper presents a study on the differential signaling for the rectangular power-bus structure. The full-wave modal analysis method analyzes how the differential-signaling can lower the power-bus resonance noise levels. The methodology is validated by the use of the FDTD method and reference measurements.

Analysis on Signal Transmission Specific property using Low Voltage Differential Signaling Interface Logic (LVDS(Low Voltage Differential Signaling) Interface Logic을 이용한 신호전달 특성 분석)

  • 김석환;최익서;허창우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.473-476
    • /
    • 2002
  • 고도로 발달된 정보화 시대에서 우리가 원하는 정보를 짧은 시간, 적은 비용으로 서로 주고받기 위해서는 이것에 맞는 시스템이 요구된다. 반도체 chip의 대용량과 고속화됨으로써 TTL, LVTTL 등이 data 100Mbps 정도를 안전하게 전달 할 수 있는 능력이 있으므로 그 이상을 전달할 수 있는 새로운 Logic level이 필요하게 되었다. 이에 맞추어 신호 level의 여러 가지 중 본 논문에서는 Virtex II XC2V 1000 FF896을 이용하여 Differential I/O LVDS(Low Voltage Differential Signaling) level 특성을 clock, Data와의 전송 관계를 Eye_Pattern을 통해 살펴보았다.

  • PDF

A Modified LVDS Interface Circuit and Coding Method for the LCD Driving System (LCD 시스템을 위한 Modified LVDS 인터페이스 회로 및 코딩기법)

  • 김희철;은진화;최명렬;이상선
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.424-432
    • /
    • 2000
  • In this paper, we propose a new signaling method and circuits for interface between the host and LCD (Liquid Crystal Display) controller in the LCD system. The proposed circuits are allowed to transmit two data signals through modified-LVDS circuits and can reduce the operating frequency to a half. Then, we can solve EMI(Electro Magnetic Interference) problem and the power consumption by using differential signaling method. We have compared and analyzed the proposed method and the conventional methods in the power consumption and data rate. In addition, the proposed methods reduce hardware complexity significantly.

  • PDF

Differential Functions of Ras for Malignant Phenotypic Conversion

  • Moon Aree
    • Archives of Pharmacal Research
    • /
    • v.29 no.2
    • /
    • pp.113-122
    • /
    • 2006
  • Among the effector molecules connected with the group of cell surface receptors, Ras proteins have essential roles in transducing extracellular signals to diverse intracellular events, by controlling the activities of multiple signaling pathways. For over 20 years since the discovery of Ras proteins, an enormous amount of knowledge has been accumulated as to how the proteins function in overlapping or distinct fashions. The signaling networks they regulate are very complex due to their multiple functions and cross-talks. Much attention has been paid to the pathological role of Ras in tumorigenesis. In particular, human tumors very frequently express Ras proteins constitutively activated by point mutations. Up to date, three members of the Ras family have been identified, namely H-Ras, K-Ras (A and B), and N-Ras. Although these Ras isoforms function in similar ways, many evidences also support the distinct molecular function of each Ras protein. This review summarizes differential functions of Ras and highlights the current view of the distinct signaling network regulated by each Ras for its contribution to the malignant phenotypic conversion of breast epithelial cells. Four issues are addressed in this review: (1) Ras proteins, (2) membrane localization of Ras, (3) effector molecules downstream of Ras, (4) Ras signaling in invasion. In spite of the accumulation of information on the differential functions of Ras, much more remains to be elucidated to understand the Ras-mediated molecular events of malignant phenotypic conversion of cells in a greater detail.

Twisted Differential Line Structure on High-Speed Printed Circuit Boards to Enhance Immunity to Crosstalk and External Noise

  • Kam, Dong-Gun;Kim, Joung-Ho
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • Differential signaling has become a popular choice for high-speed interconnection schemes on Printed Circuit Boards (PCBs), offering superior immunity to external noise. However, conventional differential transmission lines on PCBs have problems, such as crosstalk and radiated emission. To overcome these, we propose a Twisted Differential Line (TDL) structure on a multi-layer PCB. Its improved immunity to crosstalk noise and the reduced radiated emission has been successfully demonstrated by measurement. The proposed structure is proven to transmit 3 Gbps digital signals with a clear eye-pattern. Furthermore, it is subject to much less crosstalk noise and achieves a 13 dB suppression of radiated emission. Index Terms - Twisted Differential Line, Differential Signaling, Crosstalk, Radiated Emission, Transmission Line, Twisted Pair

A New Via Structure for Differential Signaling (차동 신호용 비아 구조)

  • Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.2
    • /
    • pp.61-66
    • /
    • 2011
  • A new via structure on printed circuit board has been proposed for differential signaling in applications of high-speed interconnection. In new structure, the via is physically separated and then divided into two electrically-isolated sections using mechanical drill routing process. These cutted vias are connected respectively to the traces of the differential pair. New via structure makes possible to rout the differential pair using only one via, while conventional via structure needs two vias for interconnection. Because the spacing even in via region keeps almost constant, new via structure can alleviate an impedance discontinuity and then enhance its signal transmission characteristics such as reflection loss and insertion loss. It is expected that new via structure is effective in differential signaling for high-speed interconnection.

A study on the long distance data transmission of underwater acoustic sensor (수중 음향센서의 원거리 데이터 전송에 관한 연구)

  • Han, Jeong-Hee;Lee, Byung-Hwa;Kim, Dong-Wook;Lee, Jeong-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.240-245
    • /
    • 2019
  • This paper is a study result on long distance transmission of underwater acoustic sensor data over cable. The data transceiver is designed using the LVDS (Low Voltage Differential Signaling) transmission scheme, and the jitter characteristics are analyzed by measuring the long distance transmission signal through the cable. In order to reduce the jitter, a pre-emphasis technique is applied to compensate the transmitting signal to be attenuated by long distance transmission, and the transmission characteristics were verified according to the distance.

Analysis and Design Optimization of Interconnects for High-Speed LVDS Applications (고속 LVDS 응용을 위한 전송선 분석 및 설계 최적화)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.10
    • /
    • pp.70-78
    • /
    • 2009
  • This paper addresses the analysis and the design optimization of differential interconnects for high-speed Low-Voltage Differential Signaling (LVDS) applications. Thanks to the differential transmission and the low voltage swing, LVDS offers high data rates and improved noise immunity with significantly reduced power consumption in data communications, high-resolution display, and flat panel display. We present an improved model and new equations to reduce impedance mismatch and signal degradation in cascaded interconnects using optimization of interconnect design parameters such as trace width, trace height and trace space in differential printed circuit board (FPCB) transmission lines. We have carried out frequency-domain full-wave electromagnetic simulations, and time-domain transient simulations to evaluate the high-frequency characteristics of the differential FPCB interconnects. We believe that the proposed approach is very helpful to optimize high-speed differential FPCB interconnects for LVDS applications.

Ginsentology I: Differential Ca2+ Signaling Regulations by Ginsenosides in Neuronal and Non-neuronal cells

  • Lee, Jun-Ho;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.30 no.2
    • /
    • pp.57-63
    • /
    • 2006
  • One of the various signaling agents in the animal cells is the simple ion called calcium, $Ca^{2+}$.$Ca^{2+}$ controls almost everything that animals do, including fertilization, secretion, metabolism, muscle contractions, heartbeat, learning, memory stores, and more. To do all of this, $Ca^{2+}$ acts as an intracellular messenger, relaying information within cells to regulate their activity. In contrast, the maintenance of intracellular high $Ca^{2+}$ concentrations caused by various excitatory agents or toxins can lead to the disintegration of cells (necrosis) through the activity of $Ca^{2+}$-sensitive protein-digesting enzymes. High concentrations of calcium have also been implicated in the more orderly programs of cell death known as apoptosis. Because this simple ion, acts as an agent for cell birth, life and death, to coordinate all of these functions, $Ca^{2+}$ signalings should be regulated precisely and tightly. Recent reports have shown that ginsenosides regulate directly and indirectly intracellular $Ca^{2+}$ level with differential manners between neuronal and non-neuronal cells. This brief review will attempt to survey how ginsenosides differentially regulate intracellular $Ca^{2+}$ signaling mediated by various ion channels and receptor activations in neuronal and non-neuronal cells.