• Title/Summary/Keyword: direct analysis method

Search Result 2,687, Processing Time 0.035 seconds

A Study on the Effective Scattering Center Analysis for Radar Cross Section Reduction of Complex Structures (복합구조물의 RCS 저감을 위한 효율적 산란중심 해석에 관한 연구)

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.421-426
    • /
    • 2005
  • Scattering center extraction schemes for radar cross section reduction of large complex targets, like warships, was developed, which are an 1-D radar image method(range profile), and a direct analysis based on an object precision method. The analysis result of partial dihedral model shows that the presented direct analysis method is more efficient than the 1-D radar image method for scattering center extraction of interested targets, in terms of radar cross section reduction design, not signal processing. In order to verify the accuracy of the direct analysis method, a scattering center analysis of an naval weapon system was carried out, and the result was coincident with that of another well-known RCS analysis program. Finally, an analysis result of RCS and its scattering center of an 120m class warship-like model presented that the direct analysis method can be an efficient and powerful tools for radar cross section reduction of large complex targets.

High Performance Hybrid Direct-Iterative Solution Method for Large Scale Structural Analysis Problems

  • Kim, Min-Ki;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.79-86
    • /
    • 2008
  • High performance direct-iterative hybrid linear solver for large scale finite element problem is developed. Direct solution method is robust but difficult to parallelize, whereas iterative solution method is opposite for direct method. Therefore, combining two solution methods is desired to get both high performance parallel efficiency and numerical robustness for large scale structural analysis problems. Hybrid method mentioned in this paper is based on FETI-DP (Finite Element Tearing and Interconnecting-Dual Primal method) which has good parallel scalability and efficiency. It is suitable for fourth and second order finite element elliptic problems including structural analysis problems. We are using the hybrid concept of theses two solution method categories, combining the multifrontal solver into FETI-DP based iterative solver. Hybrid solver is implemented for our general structural analysis code, IPSAP.

A Study on the Inelastic Analysis of Planar Frames Subjected to Cyclic Loads Using Direct Method (직접해석법에 의한 반복하중을 받는 평면골조의 비탄성해석에 관한 연구)

  • 정일영;이상호;윤태호
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.65-74
    • /
    • 1995
  • Direct method developed for the inelastic analysis of planar frames subjected to monotonic loads is extended to cyclic loads. Two frame elements for Direct Method(inelastic truss and inelastic beam) are developed. The accuracy and reliability of the preposed method is verified by comparing the analysis results of example with step-by-step analysis. Direct Method is superior to Step-by-step analysis in view of reliability of solution and analysis cost.

  • PDF

A Study on the Application of Direct Method for the Inelastic Analysis of Planar Frames (평면골조의 비탄성 거동해석을 위한 Direct Method의 적용에 관한 연구)

  • 윤태호;이상호;정일영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.1-8
    • /
    • 1995
  • A method for the inelastic response analysis of Planar frame based on Direct Method is presented. Two elements ( inelastic truss and inelastic beam ) are developed. The accuracy and reliability of the preposed method is verified by comparing the results of example analysis with BRAIN-2D developed by Powell.

  • PDF

A study on comparative analysis of direct current control in A.C.-D.C. interconnected power system (교류-직류 연계계통에 있어서 직류제어방식의 비교연구)

  • 정형환;왕용필;안병철;이광우
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.474-483
    • /
    • 1996
  • In this paper, as a part of the method improving stability, the load-flow calculation in D.C. power system and the models for stability analysis are studied with A.C-D.C. interconnected power systems transmission performed. Moreover, the theory is established in relation to each control method of D.C. power systems. Then the stability of A.C-D.C.interconnected power systems is compared and considered by the way of dividing the operating control method of the rectifier inverter converter into ACR-AVR, APR-A.gamma.R, A.alpha.R-ACR. The dynamics characteristic of terminal voltage, frequency, active-reactive power and rotor angle of the generator with disturbances and load fluctuations is considered. In addition, the characteristic of direct voltage, direct current, power and control systems. From this the comparative analysis of the direct current control method, the possibility of the stability analysis of A.C.-D.C. interconnected power system is considered. (author). refs., figs., tabs.

  • PDF

Optimum Design of the Process Parameter in Sheet Metal Forming with Design Sensitivity Analysis using the Direct Differentiation Approach (I) -Design Sensitivity Analysis- (직접미분 설계민감도 해석을 이용한 박판금속성형 공정변수 최적화 (I) -설계민감도 해석 -)

  • Kim, Se-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2245-2252
    • /
    • 2002
  • Design sensitivity analysis scheme is proposed in an elasto -plastic finite element method with explicit time integration using a direct differentiation method. The direct differentiation is concerned with large deformation, the elasto-plastic constitutive relation, shell elements with reduced integration and the contact scheme. The design sensitivities with respect to the process parameter are calculated with the direct analytical differentiation of the governing equation. The sensitivity results obtained from the present theory are compared with that obtained by the finite difference method in a class of sheet metal forming problems such as hemi-spherical stretching and cylindrical cup deep-drawing. The result shows good agreement with the finite difference method and demonstrates that the preposed sensitivity calculation scheme is a pplicable in the complicated sheet metal forming analysis and design.

A Direct Cost Analysis Model in Manufacturing System (생산 시스템에서 직접 원가 분석 모델)

  • Han, Jooyun;Jeong, Bongju;Yoo, Il-Geon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.4
    • /
    • pp.321-333
    • /
    • 2003
  • Although manufacturing cost is a major part of profit in a company, it is difficult to be calculated by an analytic method. Besides, the manufacturing cost gained by simple financial structure dose not have an important meaning in market place. Therefore, an analytic method of computing the manufacturing cost is very necessary in manufacturing system. In this study, we suggested the direct cost analysis model which are able to measure accurate cost analysis of product in manufacturing system. The direct cost analysis model is made up of directly used expenditure for unit product. Also, system performances are put in the manufacturing cost analysis model so that it could be possible to analyze the change of manufacturing cost as system performances change. At the end of this paper, it verifies its relevancy and practicality of the suggested direct cost analysis model through the case study, using real data for direct labor cost.

The Influence of the Application Methods of Direct Analysis Method for the Evaluation of Frame Stability (골조 안정성 평가를 위한 직접해석법의 적용 방법에 따른 영향)

  • Kim, Hee-Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.293-303
    • /
    • 2010
  • The purpose of this study was to evaluate the influence of the methods of application of the direct analysis method, using the load amplification factor suggested by the KBC 2009 design code, for the evaluation of frame stability. For this purpose, the direct analysis method was performed for three-story-one-bay and five-story-three-bay unbraced steel frames with various notional loads, bending stiffness reductions, and factor B2s. The results of the analyses were compared with the results of the second-order inelastic analysis to evaluate the influence of the applied methods. The scale of the frame, the axial load ratio, and the axial load distribution pattern were added to the main parameters to investigate the external effects. The research results showed that the influence of the methods of application of the direct analysis method is not significant in the case of the required axial strength and the application of the additional notional loads; and that the application of the factor B2 with the story stiffness concept to the direct analysis method is appropriate for the required flexural strength.

Transient Response Analysis of Frame Structures Using the Finite Element-transfer Stiffness Coefficient Method (FE-TSCM) (유한요소-전달강성계수법을 이용한 골조 구조물의 과도응답해석)

  • 최명수;문덕홍;김성진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.674-684
    • /
    • 2002
  • In order to decrease remarkably the computation time and storage used in the direct integration method without the loss of accuracy, authors suggest a new transient analysis algorithm. This algorithm is derived from the combination of three techniques, that is, the transfer technique of the transfer stiffness coefficient method, the modeling technique of the finite element method, and the numerical integration technique of the Newmark method. In this paper, the transient analysis algorithm of a frame structure is formulated by the proposed method. The accuracy and computation efficiency of the proposed method are demonstrated through the comparing with the computation results by the direct integration method for three computation models under various excitations.

Direct Inelastic Slab Design (직접비탄성 슬래브 설계법의 개발)

  • Jung Won-Hee;Park Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.498-501
    • /
    • 2004
  • A new slab design using secant stiffness, Direct Inelastic Slab Design, was developed. Since basically the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of slab because it can analyzes the inelastic behavior of structure using iterative calculations for secant stiffness. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and compared with traditional nonlinear analysis, and experiments. The Direct Inelastic Slab Design, as an integrated analysis/design method, can directly address the design strategy intended by the engineer, such as moment strength and ductility limit. As a result, economical and safe design can be achieved.

  • PDF