• Title/Summary/Keyword: displacement-controlled method

Search Result 114, Processing Time 0.034 seconds

A Study on Application and Stability Analysis of Spiral Pipe Nailing System Using Simplified Trial Wedge Method (간편 시행쐐기법을 이용한 스파이럴 파이프 네일링 시스템의 안정해석 및 적용성에 관한 연구)

  • Kim, Hong-Taek;Park, Si-Sam;Park, Sung-Chul;Jung, Sung-Pill
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.651-658
    • /
    • 2004
  • In this study, we introduced the spiral pipe nailing system (refer as SPN system) with self drilling method, can apply to ground which is hard to keep shape of bore hole, and performed limit equilibrium analysis with simplilied trial wedge method while length ratio and bond ratio were altered to evaluate slope stability considered of tensile strength and bending stiffness. A newly soil nailing system named as the SPN system is respected to reduce displacement of nail and increase global slope stability. And effects of various factors related to the design of the SPN system, such as the type of drilling method and the bit, are examined throughout a series of the displacement-controlled field pull-out tests. 6 displacement-controlled field pull-out tests are performed in the present study and the volume of grouting arc also evaluated based on the measurements. In addition, short-term characteristics of pull-out deformations of the newly proposed SPN system are analyzed and compared with those of the general soil nailing system by carrying out the displacement-controlled field pull-out tests.

  • PDF

A displacement controlled method for evaluating ground settlement induced by excavation in clay

  • Qian, Jiangu;Tong, Yuanmeng;Mu, Linlong;Lu, Qi;Zhao, Hequan
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.275-285
    • /
    • 2020
  • Excavation usually induces considerable ground settlement in soft ground, which may result in damage of adjacent buildings. Generally, the settlement is predicted through elastic-plastic finite element method and empirical method with defects. In this paper, an analytical solution for predicting ground settlement induced by excavation is developed based on the definition of three basic modes of wall displacement: T mode, R mode and P model. A separation variable method is employed to solve the problem based on elastic theory. The solution is validated by comparing the results from the analytical method with the results from finite element method(FEM) and existing measured data. Good agreement is obtained. The results show that T mode and R mode will result in a downward-sloping ground settlement profile. The P mode will result in a concave-type ground settlement profile.

Deformability Models of Shear Controlled Members (전단지배형 부재의 변형능력 산정을 위한 모형)

  • Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.357-360
    • /
    • 2004
  • Estimation of deformation capacity of non-flexural reinforced concrete members is proposed using basic concepts of limit analysis and the virtual work method. This new approach starts with construction of admissible stress field as for an equilibrium set. Failure mechanisms compatible with admissible stress fields are postulated as for displacement set. It is assumed that the ultimate deformations as result of failure mechanisms are controlled by ultimate strain of concrete in compression. The derived formula for deformability of deep beams in shear shows reasonable range of ultimate displacement.

  • PDF

A Study on Speed Control of Hydrostatic Transmission Using High Speed Solenoid Valve (고속전자밸브를 이용한 유압전동장치의 속도 제어에 관한 연구)

  • Park, S.H.;Lee, J.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.148-157
    • /
    • 1995
  • This study deals with controlling the speed of Hydrostatic Transmission (HST) system throuth the control of pumping stroke of positive displacement pump using high-speed solenoid valve controlled by digital closed loop PWM method. The method which was done in this study is as follows: First, we modified original positive displacement pump and designed pumping stroke control system of HST by using the high-speed solenoid valve. Second, after experimenting static and dynamic characteristics on each signal flow, we identified system parameter of approximated model. Finally, to control the speed of HST, we controlled the angle of the swash plate of positive displacement pump by controlling the pressure in the control cylinder chamber. Test which was carried out in the laboratory shows that transient and steady state response could be improved by PID controller.

  • PDF

Energy based procedure to obtain target displacement of reinforced concrete structures

  • Massumi, A.;Monavari, B.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.681-695
    • /
    • 2013
  • Performance-based seismic design allows a structure to develop inelastic response during earthquakes. This modern seismic design requires more clearly defined levels of inelastic response. The ultimate deformation of a structure without total collapse (target displacement) is used to obtain the inelastic deformation capacity (inelastic performance). The inelastic performance of a structure indicates its performance under excitation. In this study, a new energy-based method to obtain the target displacement for reinforced concrete frames under cyclic loading is proposed. Concrete structures were analyzed using nonlinear static (pushover) analysis and cyclic loading. Failure of structures under cyclic loading was controlled and the new method was tested to obtain target displacement. In this method, the capacity energy absorption of the structures for both pushover and cyclic analyses were considered to be equal. The results were compared with FEMA-356, which confirmed the accuracy of the proposed method.

Post-buckling analysis using a load-displacement control (하중과 변위의 동시제어에 의한 좌굴후 현상해석)

  • Kwon, Y.D.;Lim, B.S.;Park, C.;Choi, J.M.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1931-1942
    • /
    • 1997
  • A new load/displacement parameter method is developed for the cases that loads are applied to one or more points, and displacements of a structure are controlled at one or more points sinultaneously. The procedure exploits a generalized Riks method, which utilizes load/displacement parameters as scaling factors in order to analyze the post-buckling phenomena including snap-through or snap-back. A convergence characteristic is improved by employing new relaxation factors in incremental displacement parameter, particularly at the region where exhibits severe numerical instability. The improved performance is illustrated by means of numerical example.

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

  • Jwa, Yong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Nanoengineered materials with advanced architectures are critical building blocks to modulate conventional material properties or amplify interface behavior for enhanced device performance. While several techniques exist for creating one dimensional heterostructures, electrospinning has emerged as a versatile, scalable, and cost-effective method to synthesize ultra-long nanofibers with controlled diameter (a few nanometres to several micrometres) and composition. In addition, different morphologies (e.g., nano-webs, beaded or smooth cylindrical fibers, and nanoribbons) and structures (e.g., core-.shell, hollow, branched, helical and porous structures) can be readily obtained by controlling different processing parameters. Although various nanofibers including polymers, carbon, ceramics and metals have been synthesized using direct electrospinning or through post-spinning processes, limited works were reported on the compound semiconducting nanofibers because of incompatibility of precursors. In this work, we combined electrospinning and galvanic displacement reaction to demonstrate cost-effective high throughput fabrication of ultra-long hollow semiconducting chalcogen and chalcogenide nanofibers. This procedure exploits electrospinning to fabricate ultra-long sacrificial nanofibers with controlled dimensions, morphology, and crystal structures, providing a large material database to tune electrode potentials, thereby imparting control over the composition and shape of the nanostructures that evolved during galvanic displacement reaction.

  • PDF

Nano-scale high-accuracy displacement measurement using the Michelson laser interferometer controlled with a feedback circuit (되먹임 회로로 제어하는 Michelson 레이저 간섭계를 이용한 Nano-scale 미세변위 측정)

  • Ahn, Seong-Joon;Oh, Tae-Sik;Ahn, Seung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1007-1012
    • /
    • 2007
  • A novel Michelson interferometer controlled with a feedback circuit(MIFC) has been developed and its performance has been evaluated. This new interferometer can measure the displacement of the sample by directly reading the feedback bias applied to the PZT whose piezoelectric characteristic is known. The experimental result showed that the step height the silicon membrane measured by using MIFC was actually same with the value measured by SEM, which confirms that MICS is an easy and accurate method for the nano-scale displacement measurement.

  • PDF

Position Control of Piezoelectric Flexible Arm Using Fuzzy Algorithms (퍼지이론을 이용한 압전소자 플렉시블암의 위치제어)

  • 류재춘;박종국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.176-179
    • /
    • 1996
  • This paper describes the tip displacement of a flexible miniature arm controlled by the piezoelectric bimorph cells cemented on the surface of the arm. The arm is driven by the torques generated by the cells, and the endpoiht of the arm is controlled so that it moves in synchrony with the fluctuation of the target and maintains a constant distance to the surface of the traget. The voltage applied to the cells is controlled by a feedback signal composed of the tip displacement and the velocity. A theoretical solution is obtained by considering the cell-arm system as a stepped beam and applying time-discrete method to the governing equations of the system. The results are good agreement for a wide range of physical paramehers involved.

  • PDF

Stochastic optimal control analysis of a piezoelectric shell subjected to stochastic boundary perturbations

  • Ying, Z.G.;Feng, J.;Zhu, W.Q.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.231-251
    • /
    • 2012
  • The stochastic optimal control for a piezoelectric spherically symmetric shell subjected to stochastic boundary perturbations is constructed, analyzed and evaluated. The stochastic optimal control problem on the boundary stress output reduction of the piezoelectric shell subjected to stochastic boundary displacement perturbations is presented. The electric potential integral as a function of displacement is obtained to convert the differential equations for the piezoelectric shell with electrical and mechanical coupling into the equation only for displacement. The displacement transformation is constructed to convert the stochastic boundary conditions into homogeneous ones, and the transformed displacement is expanded in space to convert further the partial differential equation for displacement into ordinary differential equations by using the Galerkin method. Then the stochastic optimal control problem of the piezoelectric shell in partial differential equations is transformed into that of the multi-degree-of-freedom system. The optimal control law for electric potential is determined according to the stochastic dynamical programming principle. The frequency-response function matrix, power spectral density matrix and correlation function matrix of the controlled system response are derived based on the theory of random vibration. The expressions of mean-square stress, displacement and electric potential of the controlled piezoelectric shell are finally obtained to evaluate the control effectiveness. Numerical results are given to illustrate the high relative reduction in the root-mean-square boundary stress of the piezoelectric shell subjected to stochastic boundary displacement perturbations by the optimal electric potential control.