• 제목/요약/키워드: dissolved methane recovery

검색결과 4건 처리시간 0.02초

불화 실리카로 개질된 폴리에테르이미드 중공사막을 이용한 혐기성 유출수로부터 바이오가스 회수 (PEI Hollow Fiber Membranes Modified with Fluorinated Silica Nanoparticles for the Recovery of Biogas from Anaerobic Effluents)

  • 윤강희;수니 웡치피몬;배태현
    • 멤브레인
    • /
    • 제30권5호
    • /
    • pp.326-332
    • /
    • 2020
  • 본 연구에서는, 혐기성 처리수에 용해된 바이오가스의 회수를 위해 불화 실리카/고분자 중공사 복합막을 제조하고 막접촉기에서의 성능을 평가하였다. 복합막은 상용 폴리에테르이미드인(PEI) Ultem®을 이용하여 만든 중공사막 표면에 불화 실리카를 강력한 공유 결합을 통해 코팅하는 방법으로 제조되었다. 막접촉기는 바이오가스로 포화된 수용액을 중공사의 외부에 공급하고, 중공사 내부로 기체를 투과시키는 방법으로 운전하였다. 높은 공극률을 가진 중공사막(PEI-fSiO2-A)은 액상 속도가 0.03 m/s일 때 메탄 회수 유량이 8.25 × 10-5 ㎤ (STP)/㎠·s에 달했고 불화 실리카에 의해 표면 소수성이 매우 높아져 물과의 접촉각이 75.6°에서 120~122°로 향상되었다. 본 연구에서 제조된 복합막은 바이오가스의 투과 속도와 소수성 모두에서 탈기용으로 제조된 상용 폴리프로필렌 막보다 우수한 성능을 나타냈다.

혐기성 막 생물반응조를 이용한 하수처리의 최근 동향 (Recent trends in anaerobic membrane bioreactor treatment of domestic wastewater)

  • 신중헌;배재호;김정환
    • 상하수도학회지
    • /
    • 제27권5호
    • /
    • pp.529-545
    • /
    • 2013
  • With the increasing concern on climate changes and energy shortage, anaerobic membrane bioreactors (AnMBR) become a promising alternative to aerobic processes for domestic wastewater treatment. Two major advantages of AnMBRs are energy production and sludge reduction. Recently, several different configurations of AnMBRs have been proved to produce high quality effluent at reasonable hydraulic retention time and ambient temperature. One of the major problems of the AnMBR is membrane fouling control, and some solutions are already suggested. Other problems to be solved before the full application of the AnMBR are recovery of dissolved methane, management of residual nutrients and sulfide. Considering the potential advantages and future technology development, AnMBR will become major domestic wastewater treatment process in near future.

축산폐수 처리 및 재활용을 위한 조건성연못의 메탄발효 (Methane Fermentation of Facultative Pond in Pond System for Ecological Treatment and Recycling of Livestock Wastewater)

  • 양홍모
    • 한국환경농학회지
    • /
    • 제19권2호
    • /
    • pp.171-176
    • /
    • 2000
  • 조건성연못의 메탄발효 환경조건은 용존산소가 없고, 혐기성 및 중성 pH가 유지되어야 하며, 온도변화가 적어야 한다. 분석결과 실험 조건성연못의 바닥은 이러한 조건들을 충족시키고 있어 설계인자가 비교적 적절하다고 본다. 조건성연못의 수심이 2.4m일 경우도 강한 바람이 불면 상충의 용존산소가 바닥으로 이동하여 연못바닥의 메탄발효를 일시적으로 저하시키는 현상이 있을 수 있다. 용존산소의 바닥침투를 완화하기 위해 수심을 깊게 설계할 수 있으나 수심이 깊어지면 연못바닥의 수온이 낮아져 메탄발효의 효율이 저하된다. 실험결과 조건성연못의 수심은 2.4m 정도가 적합하다고 본다. 최근에는 용존산소의 연못바닥 침투를 차단하기 위해 연못바닥에 Pit를 설치하는 방법이 연구되고 있으나 시설비용이 추가되는 단점이 있다. 실험 조건성연못의 슬러지층의 온도가 $16^{\circ}C$ 이상에서 메탄발효가 원활히 일어나고 있다. 기존 조건성연못의 메탄발효 연구에 의하면 연못바닥 슬러지충의 온도가 $19^{\circ}C$에서 슬러지 분해량과 침전량이 같아진다고 보고되고 있다. 실험 조건성연못에서는 $19^{\circ}C$보다 $3^{\circ}C$ 낮은 온도에서도 메탄발효가 원활히 일어나고 있다. 실험 조건성연못의 바닥온도 분석결과 메탄발효가 거의 정지되는 $14^{\circ}C$이하가 되는 기간이 약 7 개월이 되어, 매년 어느 정도의 슬러지는 바닥에 쌓이게 된다. 1997년 1월부터 9월까지 9개월 동안 연못바닥에 형성된 슬러지 깊이가 1.3cm였다. 따라서 연간 약 1.7cm가 쌓일 것으로 예측된다. 실험 조건성연못처럼 연못의 수심을 2.4m로 유지하고, 연못바닥에 슬러지 퇴적을 위해 여분의 0.3m 깊이를 두어 15 - 20년에 한번 슬러지를 제거할 수 있도록 설계하는 것이 바람직하다고 사료된다. 메탄발생이 왕성한 기간에 연못상충에서 포집한 가스의 83%가 메탄으로 구성되어 있어 축산폐수를 처리하면서 메탄가스를 회수하여 연료로 사용하는 것이 가능하다. Parker(1979)의 연구에 의하면 슬러지층이 형성되지 않은 연못이 슬러지층이 형성된 연못의 BOD제거수준에 이르는데는 약 1년이 소요된다.$^{24)}$ 메탄박테리아 활동이 슬러지층의 표면에서 훨씬 높기 때문이다. 본 연구는 조건성연못의 초기 메탄발효를 분석한 것으로 조건성연못이 생태적으로 적용하면 초기단계보다 메탄발효의 효율이 증가할 것으로 예측된다.

  • PDF

압력코어를 이용한 가스 하이드레이트 탐사: ODP Leg 204 (Gas Hydrate Exploration by using PCS(Pressre Core Sampler): ODP Leg 204)

  • 이영주
    • 자원환경지질
    • /
    • 제38권2호
    • /
    • pp.165-176
    • /
    • 2005
  • 심해저 퇴적물에 분포하는 천연가스는 물리, 화학적인 조건에 따라서 세 가지 상(phase)으로 존재한다. 즉, 공극수에 녹아있는 가스의 농도가 용해도 이하이면 용존 가스 형태로 존재할 것이며, 용해도 이상이면 자유가스가(free gas) 형성될 것이며, 자유가스를 포함하는 해저 퇴적물이 저온 고압 조건인 하이드레이트 안정 지역이라면 가스 하이드레이트로 존재한다. 심해저 퇴적물내의 가스의 농도를 정확히 파악할 수 있다면 천연가스와 하이드레이트의 형성과 분포를 예측할 수 쳐다. 그러나, 해저 퇴적물 내에 포함되어 있는 가스의 양을 정확히 측정하는 것은 매우 어렵다. 심해저 퇴적층에서 가스를 채취하는 방법으로 널리 이용되는 공기층 가스 기법을 이용하여 퇴적물내의 가스의 양을 가늠하는 것은 천부 퇴적층에서만 가능하고 심부 지층에서 채취한 가스는 코어 회수와 시료 채취 과정에서 대부분의 가스가 유실되고 극히 일부만 정량 분석된다. 압력 코어(Pressure Core Sampler PCS)는 길이 $1{\cal}m$, 반경 $4.32{\cal}cm$ 규격으로 총 $1,465cm^3$의 퇴적물을 68.9 Mpa 압력 하에서 채취하는 장비이다. ODP Leg 204 시추 동안에 총 6개 지점(site) 에서 압력 코어를 사용하여 각 시추 지점에서 심도에 따른 퇴적물내의 가스의 양과 가스 하이드레이트의 분포를 측정하였다. 분석 결과 시추 위치에 따라서 가스 농도 및 분포 특성이 서로 다르게 나타났다. 하이드레이트 릿지(Hydrate Ridge)의 정상 주변에는 해저면 퇴적물에 메탄가스가 과포화되어 있고 정상 측면 및 분지지역에는 일부 심도의 퇴적물에서만 과포화되어 있었다. 하이드레이트 릿지의 가스 하이드레이트 분포는 압력 코어에 의해서 측정한 현장(in-situ)의 가스 농도 특성과 매우 밀접한 관계가 있는 것으로 나타났다.