• Title/Summary/Keyword: domestication

Search Result 61, Processing Time 0.025 seconds

Ethnobotany of Wild Baobab (Adansonia digitata L.): A Way Forward for Species Domestication and Conservation in Sudan

  • Gurashi, N.A.;Kordofani, M.A.Y.;Adam, Y.O.
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.270-280
    • /
    • 2017
  • Selection of superior phenotypes of fruit trees and products based on established criteria by local people is a prerequisite for future species domestication and conservation. Thus the study objective was to identify the local people's perceptions and preferences on baobab trees and products. A sample of 142 respondents was randomly selected using structured interviews in Blue Nile and North Kordofan, Sudan in 2013. Descriptive analysis was employed using SPSS and Excel programs. The study results indicated that local people use the morphological characteristics of the tree (leaves, fruits, seeds, kernels and bark) to differentiate individual trees. Based on the perceptions, local people recorded trees with delicious leaves, white pulp color, big fruit size and mature capsule size, and high pulp yield as criteria for differentiating between baobab trees in the study areas. In contrast, the undesirable traits were connected to trees with acidic pulp, slimy pulp, bitter leaves, and low pulp yield. The study concluded that the ethnobotanical knowledge of the baobab tree and its products may play an important role in tree domestication and improvement in Sudan. However, further research on tree genetics is needed to complement the ethnobotanical knowledge for baobab resources domestication and conservation.

Whole-genome resequencing reveals domestication and signatures of selection in Ujimqin, Sunit, and Wu Ranke Mongolian sheep breeds

  • Wang, Hanning;Zhong, Liang;Dong, Yanbing;Meng, Lingbo;Ji, Cheng;Luo, Hui;Fu, Mengrong;Qi, Zhi;Mi, Lan
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1303-1313
    • /
    • 2022
  • Objective: The current study aimed to perform whole-genome resequencing of Chinese indigenous Mongolian sheep breeds including Ujimqin, Sunit, and Wu Ranke sheep breeds (UJMQ, SNT, WRK) and deeply analyze genetic variation, population structure, domestication, and selection for domestication traits among these Mongolian sheep breeds. Methods: Blood samples were collected from a total of 60 individuals comprising 20 WRK, 20 UJMQ, and 20 SNT. For genome sequencing, about 1.5 ㎍ of genomic DNA was used for library construction with an insert size of about 350 bp. Pair-end sequencing were performed on Illumina NovaSeq platform, with the read length of 150 bp at each end. We then investigated the domestication and signatures of selection in these sheep breeds. Results: According to the population and demographic analyses, WRK and SNT populations were very similar, which were different from UJMQ populations. Genome wide association study identified 468 and 779 significant loci from SNT vs UJMQ, and UJMQ vs WRK, respectively. However, only 3 loci were identified from SNT vs WRK. Genomic comparison and selective sweep analysis among these sheep breeds suggested that genes associated with regulation of secretion, metabolic pathways including estrogen metabolism and amino acid metabolism, and neuron development have undergone strong selection during domestication. Conclusion: Our findings will facilitate the understanding of Chinese indigenous Mongolian sheep breeds domestication and selection for complex traits and provide a valuable genomic resource for future studies of sheep and other domestic animal breeding.

The domestication event of the Tibetan pig revealed to be in the upstream region of the Yellow River based on the mtDNA D-loop

  • Ge, Qianyun;Gao, Caixia;Cai, Yuan;Jiao, Ting;Quan, Jinqiang;Guo, Yongbo;Zheng, Wangshan;Zhao, Shengguo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.531-538
    • /
    • 2020
  • Objective: Evidence from previous reports indicates that pig domestication in East Asia mainly occurred in the Mekong region and the middle and downstream regions of the Yangtze River. Further research identified two new origin centers for domestic pigs in the Tibetan Plateau and the islands of Southeast Asia. However, due to the small sample size of Tibetan pigs, details of the origin and spread of Tibetan pigs has not yet been established. Methods: We analyzed mitochondrial DNA control region (D-loop) variation in 1,201 individuals from nine Tibetan pig populations across five provinces. Comprehensive Tibetan pig samples were taken to perform the most detailed analysis of Tibetan pigs to date. Results: The result indicate that Rkaze pigs had the lowest level of diversity, while Changdu pigs had the highest diversity. Interestingly, these two populations were both in the Tibetan Plateau area. If we calculate diversity in terms of each province, the Tibetan Plateau area had the lowest diversity, while the Chinese province of Gansu had the highest diversity. Diversity gradient analysis of major haplotypes suggested three domestication centers of Tibetan pigs in the Tibetan Plateau and the Chinese provinces of Gansu and Yunnan. Conclusion: We found two new domestication centers for Tibetan pigs. One is in the Chinese province of Gansu, which lies in the upstream region of the Yellow River, and the other is in the Chinese province of Yunnan.

A Historical Study on the Utilization of Wild Vegetables as Foods in Korea (한국산채류 이용의 역사적 고찰)

  • LeeKim, Mie-Soon
    • Journal of the Korean Society of Food Culture
    • /
    • v.1 no.2
    • /
    • pp.167-170
    • /
    • 1986
  • The first historical record on the use of wild edible plants as foods in Korea involves sswuk and manul concerned with the mythology of Tangun. Numerous names of wild vegetables had been recorded in various ancient books. Wild edible plants are of great value as food resources and for domestication, since they have variable edible portions and quite a long picking season. Several kinds of wild edible plants have been already grown as vegetable crops. Doragi (Platycodon grandiflorum) is probably the one with the longest history of cultivation. During World War II, an attempt had been made to substitute vegetable crops for wild edible plants. As picking wild greens requires a great deal of labor and plants of wild growth are limited in the amount, domestication of wild vegetables as crops appears to be an urgent need for securing food resources in Korea.

  • PDF

Genomic analysis reveals selection signatures of the Wannan Black pig during domestication and breeding

  • Zhang, Wei;Yang, Min;Wang, Yuanlang;Wu, Xudong;Zhang, Xiaodong;Ding, Yueyun;Yin, Zongjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.712-721
    • /
    • 2020
  • Objective: The Wannan Black pig is a typical Chinese indigenous, disease-resistant pig breed with high fertility, and a crude-feed tolerance that has been bred by artificial selection in the south of Anhui province for a long time. However, genome variation, genetic relationships with other pig breeds, and domestication, remain poorly understood. Here, we focus on elucidating the genetic characteristics of the Wannan Black pig and identifying selection signatures during domestication and breeding. Methods: We identified the whole-genome variation in the Wannan Black pig and performed population admixture analyses to determine genetic relationships with other domesticated pig breeds and wild boars. Then, we identified the selection signatures between the Wannan Black pig and Asian wild boars in 100-kb windows sliding in 10 kb steps by using two approaches: the fixation index (FST) and π ratios. Results: Resequencing the Wannan Black pig genome yielded 501.52 G of raw data. After calling single-nucleotide variants (SNVs) and insertions/deletions (InDels), we identified 21,316,754 SNVs and 5,067,206 InDels (2,898,582 inserts and 2,168,624 deletions). Additionally, we found genes associated with growth, immunity, and digestive functions. Conclusion: Our findings help in explaining the unique genetic and phenotypic characteristics of Wannan Black pigs, which in turn can be informative for future breeding programs of Wannan Black pigs.

Hanwoo cattle: origin, domestication, breeding strategies and genomic selection

  • Lee, Seung-Hwan;Park, Byoung-Ho;Sharma, Aditi;Dang, Chang-Gwon;Lee, Seung-Soo;Choi, Tae-Jeong;Choy, Yeon-Ho;Kim, Hyeong-Cheol;Jeon, Ki-Jun;Kim, Si-Dong;Yeon, Seong-Heum;Park, Soo-Bong;Kang, Hee-Seol
    • Journal of Animal Science and Technology
    • /
    • v.56 no.1
    • /
    • pp.2.1-2.8
    • /
    • 2014
  • Hanwoo (Korean cattle) is the native, taurine type of cattle breed of Korea and its history as a draft animal dates back to 5000 Years. In earlier times Hanwoo was used extensively for farming, transportation. Over the period of time, Hanwoo has changed to be meat type cattle. Full-scale production of Hanwoo as meat-type cattle has occurred since 1960s with the rapid growth of the Korean economy. Hanwoo is one of the most economically important species in Korea as it is a significant source of nutrition to the Korean people. Hanwoo beef is the most cherished food of Korea. One of the main goals of researchers is to increase the meat quality, quantity and taste of the beef. In this review we describe the origin, domestication of Hanwoo cattle and breeding program initiated from 1980's. Moreover the advent of technological advancement had provided us a platform to perform genome wide selection on economic traits and its implementation into traditional breeding programs.

In silico approaches to identify the functional and structural effects of non-synonymous SNPs in selective sweeps of the Berkshire pig genome

  • Shin, Donghyun;Oh, Jae-Don;Won, Kyeong-Hye;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1150-1159
    • /
    • 2018
  • Objective: Non-synonymous single nucleotide polymorphisms (nsSNPs) were identified in Berkshire selective sweep regions and then were investigated to discover genetic nsSNP mechanisms that were potentially associated with Berkshire domestication and meat quality. We further used bioinformatics tools to predict damaging amino-acid substitutions in Berkshire-related nsSNPs. Methods: nsSNPs were examined in whole genome resequencing data of 110 pigs, including 14 Berkshire pigs, generated using the Illumina Hiseq2000 platform to identify variations that might affect meat quality in Berkshire pigs. Results: Total 65,550 nsSNPs were identified in the mapped regions; among these, 319 were found in Berkshire selective-sweep regions reported in a previous study. Genes encompassing these nsSNPs were involved in lipid metabolism, intramuscular fatty-acid deposition, and muscle development. The effects of amino acid change by nsSNPs on protein functions were predicted using sorting intolerant from tolerant and polymorphism phenotyping V2 to reveal their potential roles in biological processes that may correlate with the unique Berkshire meat-quality traits. Conclusion: Our nsSNP findings confirmed the history of Berkshire pigs and illustrated the effects of domestication on generic-variation patterns. Our novel findings, which are generally consistent with those of previous studies, facilitated a better understanding of Berkshire domestication. In summary, we extensively investigated the relationship between genomic composition and phenotypic traits by scanning for nsSNPs in large-scale whole-genome sequencing data.

In silico approaches to discover the functional impact of non-synonymous single nucleotide polymorphisms in selective sweep regions of the Landrace genome

  • Shin, Donghyun;Won, Kyung-Hye;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1980-1990
    • /
    • 2018
  • Objective: The aim of this study was to discover the functional impact of non-synonymous single nucleotide polymorphisms (nsSNPs) that were found in selective sweep regions of the Landrace genome Methods: Whole-genome re-sequencing data were obtained from 40 pigs, including 14 Landrace, 16 Yorkshire, and 10 wild boars, which were generated with the Illumina HiSeq 2000 platform. The nsSNPs in the selective sweep regions of the Landrace genome were identified, and the impacts of these variations on protein function were predicted to reveal their potential association with traits of the Landrace breed, such as reproductive capacity. Results: Total of 53,998 nsSNPs in the mapped regions of pigs were identified, and among them, 345 nsSNPs were found in the selective sweep regions of the Landrace genome which were reported previously. The genes featuring these nsSNPs fell into various functional categories, such as reproductive capacity or growth and development during the perinatal period. The impacts of amino acid sequence changes by nsSNPs on protein function were predicted using two in silico SNP prediction algorithms, i.e., sorting intolerant from tolerant and polymorphism phenotyping v2, to reveal their potential roles in biological processes that might be associated with the reproductive capacity of the Landrace breed. Conclusion: The findings elucidated the domestication history of the Landrace breed and illustrated how Landrace domestication led to patterns of genetic variation related to superior reproductive capacity. Our novel findings will help understand the process of Landrace domestication at the genome level and provide SNPs that are informative for breeding.

Genetic Insights into Domestication Loci Associated with Awn Development in Rice

  • Ngoc Ha Luong;Sangshetty G. Balkunde;Kyu-Chan Shim;Cheryl Adeva;Hyun-Sook Lee;Hyun-Jung Kim;Sang-Nag Ahn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.33-33
    • /
    • 2022
  • Rice (Oryza sativa L.) is a widely studied domesticated model plant. Seed awning is an unfavorable trait during rice harvesting and processing. Hence, awn was one of the target characters selected during domestication. However, the genetic mechanisms underlying awn development in rice are not well understood. In this study, we analyzed the genes for awn development using a mapping population derived from a cross between the Korean indica cultivar 'Milyang23' and NIL4/9 (derived from a cross between 'Hwaseong' and O. minuta). Two quantitative trait loci (QTLs), qAwn4 and qAwn9 were mapped on chromosome 4 and 9, respectively, increased awn length in an additive manner. Through comparative sequencing analyses parental lines, LABA1 was determined as the causal gene underlying qAwn4. qAwn9 was mapped to a 199-kb physical region between markers RM24663 and RM24679. Within this interval, 27 annotated genes were identified, and five genes, including a basic leucine zipper transcription factor 76 (OsbZIP76), were considered candidate genes for qAwn9 based on their functional annotations and sequence variations. Haplotype analysis using the candidate genes revealed tropical japonica specific sequence variants in the qAwn9 region, which partly explains the non-detection of qAwn9 in previous studies that used progenies from interspecific crosses. This provides further evidence that OsbZIP76 is possibly a causal gene for qAwn9. The O. minuta qAwn9 allele was identified as a major QTL associated with awn development in rice, providing an important molecular target for basic genetic research and domestication studies. Our results lay the foundation for further cloning of the awn gene underlying qAwn9.

  • PDF

The bovin phylogeny: A review

  • Sharma, Aditi;Lee, SeungHwan;Lee, JunHeon;Dang, Changgwon;Kim, Hyeong Cheul;Yeon, SeongHum;Kang, HeeSeol;Kanwar, Shamsher Singh;Vijh, Ramesh Kumar
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.405-413
    • /
    • 2014
  • The evolutionary history of cattle and buffalo has always been a topic of great interest to the evolutionary biologists. The phylogenetic studies of bovin species has been carried out at various levels, varying from the study of domestication and migration of populations to major cladogenesis. Along with the archeological studies there are studies from molecular biology and more recently from genomics. The phylogenetic perspective of the bovins and their evolutionary history, are reviewed in terms of what has been done, what needs to be done and potential challenges in doing it.