• Title/Summary/Keyword: dopamine content

Search Result 62, Processing Time 0.022 seconds

Effects of Bulbocapnine on Dopamine Content in PC12 Cells (Bulbocapnine이 PC12 세포중의 도파민 함량에 미치는 영향)

  • Shin, Jeong-Soo;Lee, Myung-Koo
    • YAKHAK HOEJI
    • /
    • v.42 no.2
    • /
    • pp.170-174
    • /
    • 1998
  • The effects of bulbocapnine, an aporphine isoquinoline alkaloid, on dopamine content in PC12 cells were investigated. Bulbocapnine decreased the dopamine content dose-dependentl y (39.2% inhibition at 2O${\mu}$M for 24 hr). The $IC_{50}$ value of bulbocapnine was 22.7${\mu}$M. Dopamine content was lowered at 6 hr after exposure to bulbocapnine. And then, the decreased dopamine level was almost maintained at 36 hr and recovered to the control level at about 60 hr. Tyrosine hydroxylase, the rate limiting enzyme in the catecholamine blosynthetic pathway, was also inhibited at 20${\mu}$M of bulbocapnine by 23.1% relative to control. We, therefore, hypothesized that the inhibition of tyrosine hydroxylase by bulbocapnine with a single treatment might be partially contributed to the decrease in dopamine content in PC12 cells.

  • PDF

Inhibitory Effects of Tributyltin Acetate on Dopamine Biosynthesis in PC12 Cells (Tributyltin 화합물이 PC12 세포의 Dopamine 생합성 저해작용에 미치는 영향)

  • Kim Yu-Mi;Lee Jae-Joon;Lee Myung-Koo
    • YAKHAK HOEJI
    • /
    • v.50 no.2
    • /
    • pp.105-110
    • /
    • 2006
  • The effects of tributyltin acetate (TBTA), one of the endocrine-disrupting organotin compounds, on dopamine biosynthesis in PC12 cells were investigated. Treatment of PC12 cells with TBTA at $0.05\sim0.25{\mu}M$ significantly decreased the intracellular dopamine content in a concentration-dependent manner ($IC_{50}$ value, $0.17{\mu}M$). Under these conditions, tyrosine hydroxylase (TH) activity and TH mRNA level were also decreased by $0.1{\mu}M$ TBTA at 24 h, and recovered there-after. In addition, treatment with L-DOPA at 20 and $50 {\mu}M$ increased the intracellular dopamine content in PC12 cells and the increase in dopamine content by L-DOPA was significantly abolished by TBTA at $0.1\sim0.2{\mu}M$. These results indicate that TBTA at $0.1\sim0.2{\mu}M$ causes the decrease in the basal dopamine content and abolishes the increase in dopamine content in L-DOPA-treated cells in part by the inhibition of TH gene expression and activity.

Inhibition of Dopamine Biosynthesis by Coralyne in PC12 Cells (Coralyne에 의한 PC12 세포중의 도파민 생합성 저해작용)

  • Shin, Jeong-Soo;Lee, Myung-Koo
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.1
    • /
    • pp.79-83
    • /
    • 1999
  • The effects of coralyne, a protoberberine isoquinoline compound, on dopamine biosynthesis in PC12 cells were investigated. Coralyne decreased the dopamine content dose-dependently $(46.3%\;inhibition\;at\;20\;{\mu}M\;for\;24 hr).$ Dopamine content was lowered at 6 hr and reached minimal level at 24 hr after exposure to coralyne at $20\;{\mu}M.$ The decreased dopamine level was maintained up to 48 hr and recovered to the control level at about 72 hr. Tyrosine hydroxylase, the rate-limiting enzyme in the catecholamine biosynthesis, was also inhibited at $20\;{\mu}M\;of\;coralyne$ by 16.1% relative to control. These results suggest that the inhibition of tyrosine hydroxylase by coralyne with a single treatment might be partially contributed to the decrease in dopamine content in PC12 cells.

  • PDF

Inhibitory Effects of Tetrahydropapaveroline on Dopamine Biosynthesis in PC12 Cells (Tetrahydropapaveroline의 PC12 세포내 Dopamine 생합성 저해작용)

  • Lee, Jae-Joon;Kim, Yu-Mi;Kim, Mi-Na;Lee, Myung-Koo
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.156-161
    • /
    • 2005
  • Tetrahydropapaveroline (THP) at 5-15 ${\mu}$M has been found to induce L-DOPA-induced oxidative apoptosis in PC12 cells. In this study, the inhibitory effects of THP on dopamine bios ynthesis in PC12 cells and tyrosine hydroxylase (TH) activity in bovine adrenal were investigated. Treatment of PC12 cells with THP at 2.5-10 ${\mu}$M significantly decreased the intracellular dopamine content in a concentration-dependent manner (18.3% inhibition at 10 ${\mu}$M THP). In these conditions, TH activity was markedly inhibited by the treatment with THP at 2.5-10 ${\mu}$M in PC12 cells (23.4% inhibition at 10 $\mu$ M THP). In addition, THP had an inhibitory effect on bovine adrenal TH activity IC50 value, 153.9${\mu}$M). THP exhibited uncompetitive inhibition on bovine adrenal TH activity with a substrate L-tyrosine with the KI value of 0.30 mM. Treatment with L-DOPA at 20~50 ${\mu}$M increased the intracellular dopamine content in PC12 cells, and the increase in dopamine content by L-DOPA was inhibited in part when THP at non-cytotoxic (5-10 ${\mu}$M) or cytotoxic (15${\mu}$M) concentrations was associated with L-DOPA (20 and 50 ${\mu}$M) for 24 h incubation. These results suggest that THP at 5-10${\mu}$M decreases the basal dopamine content and reduces the increased dopamine content induced by L-DOPA in part by the inhibition of TH activity, and that THP at 15${\mu}$M also decreases dopamine content by oxidative stress in PC12 cells.

Effects of Liriodenine on Dopamine Biosynthesis in PC12 Cells (Liriodenine이 PC12 세포중의 Dopamine 생합성에 미치는 영향)

  • Jin, Chun-Mei;Lee, Jae-Joon;Yin, Shou-Yu;Kim, Yu-Mi;Kim, Young-Kyoon;Rhu, Shi-Yong;Lee, Myung-Koo
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.1 s.132
    • /
    • pp.55-59
    • /
    • 2003
  • The effects of liriodenine, an aporphine isoquinoline alkaloid, on dopamine content in PCl2 cells were investigated. Treatment of PC12 cells with liriodenine decreased dopamine content in a dose-dependent manner (33.6% inhibition at $10\;{\mu}M$ for 12 h). The $IC_{50}$ in value of liriodenine was $8.4\;{\mu}M$. Dopamine content decreased at 3 h and reached a minimal level at 12 h after the exposure to liriodenine. Under these conditions, the activities of tyrosine hydroxylase and aromatic L-amino acid decarboxylase were also inhibited at $10\;{\mu}M$ of liriodenine by 10.1% and 20.2% relative to control, respectively. In addition, liriodenine inhibited the increase in dopamine content induced by L-DOPA Treatments $(50-100\;{\mu}M)$ in PC12 cells. These results suggest that liriodenine inhibited dopamine biosynthesis and L-DOPA-induced increase in dopamine content by reducing the activities of tyrosine hydroxylase and aromatic L- amino acid decarboxylase in PC12 cells.

The Harman and Norharman Reduced Dopamine Content and Induced Cytotoxicity in PC12 Cells

  • Yang, Yoo-Jung;Lim, Sung-Cil;Lee, Myung-Koo
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.106-112
    • /
    • 2008
  • The effects of harman and norharman on dopamine content and L-DOPA-induced cytotoxicity were investigated in PC12 cells. Harman and norharman decreased the intracellular dopamine content for 24 h. The $IC_{50}$ values of harman and norharman were 20.4 ${\mu}M$ and 95.8 ${\mu}M$, respectively. Tyrosine hydroxylase (TH) activity and TH mRNA levels were also decreased by 20 ${\mu}M$ harman and 100 ${\mu}M$ norharman. Under the same conditions, the intracellular cyclic AMP levels were decreased by harman and norharman. In addition, harman and norharman at concentrations higher than 80 ${\mu}M$ and 150 ${\mu}M$ caused cytotoxicity at 24 h in PC12 cells. Non-cytotoxic ranges of 10-30 ${\mu}M$ harman and 50-150 ${\mu}M$ norharman inhibited L-DOPA (20-50 ${\mu}M$)-induced increases of dopamine content at 24 h. Harman at 20-150 ${\mu}M$ and norharman at 100-300 ${\mu}M$ also enhanced LDOPA (20-100 ${\mu}M$)-induced cytotoxicity at 24 h. These results suggest that harman and norharman decrease dopamine content by reducing TH activity and aggravate L-DOPA-induced cytotoxicity in PC12 cells.

Application of HPLC with Electrochemical Detection to Assaying Tyrosine Hydroxylase Activity and Dopamine Content in Dissociated Cultures of Fetal Rat Brainstem (흰쥐 태 뇌간의 세포배양에서 HPLC-전기화학검출을 이용한 Tyrosine Hydroxylase 활성 및 Dopamine의 정량)

  • Song, Dong-Keun;Wie, Myung-Bok;Park, Chan-Woong;Kim, Yung-Hi
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.7-12
    • /
    • 1991
  • We measured the developmental increase of tyrosine hydroxylase(TH) activity and dopamine content with high performance liquid chromatography with electrochemical detection(HPLC-EC) in dissociated cultures of fetal rat brainstem(E14). TH activity and dopamine content increased progressively upto 7 days in vitro, when the effects of various drugs on the dopamine contents were studied. ${\alpha}-Methyl-p-tyrosine$, a TH inhibitor and NSD-1015, an inhibitor of aromatic amiono acid decarboxylase effectively depleted dopamine contents. Dopamine contents were depleted by reserpine and increased by pargyline. When cultures grown for 1 week in control medium were then exposed to tetrodotoxin$(0.1\;{\mu}M$) for 7 days, exposure to tetrodotoxin markedly decreased TH activity. All the above results indicate that dopamine metabolism in the cultered cells reflect reliably the property of brain dopamine metabolism. We suggest that measuring TH activity and dopamine content in brainstem culture with HPLC-EC can be useful tool in the study of pharmacology as well as toxicology of the central dopaminergic system.

  • PDF

Lignans from the Fruits of Schizandra chinensis and Their Inhibitory Effects on Dopamine Content in PC12 Cells

  • Seo, Seon-Mi;Lee, Hak-Ju;Park, Young-Ki;Lee, Myung-Koo;Park, Jae-In;Paik, Ki-Hyon
    • Natural Product Sciences
    • /
    • v.10 no.3
    • /
    • pp.104-108
    • /
    • 2004
  • Five lignans including gomisin N (1), wuweizisu C (2), gomisin L1 (3), (+)-deoxyschizandrin (4), and gomisin J (5) have been isolated from the fruits of Schizandra chinensis. The structures of the isolated compounds were elucidated by analyzing MS and NMR spectra. Effects of the compounds isolated in this study on the dopamine content in PC12 cells were investigated to evaluate their inhibitory effectiveness. The gomisin N, wuweizisu C, and gomisin J showed 25.4%, 39.8%, and 35.1 %, respectively, inhibition effect on dopamine content in PC12 cells at the concentration of $50\;{\mu}g/ml$.

Effects of Herbal Medicines on Dopamine Content in PC12 Cells (수종의 생약추출물이 PC12 Cells 중의 Dopamine 함량변화에 미치는 영향)

  • Shin, Jung-Soo;Kim, Young-Ho;Bae, Ki-Hwan;Kim, Hack-Seang;Lee, Myung-Koo
    • Korean Journal of Pharmacognosy
    • /
    • v.29 no.4
    • /
    • pp.265-270
    • /
    • 1998
  • The effects of MeOH extracts of ninety kinds of medicinal herbs on dopamine content in PC12 cells were investigated. Among them, the MeOH extracts at a concentration of $40\;{\mu}g/ml$ of Symplocarpus renifolius, Adenocaulon himalaicum and Mosla punctulata decreased $38.5{\sim}60.0%$ of dopamine content. Tyrosine hydroxylase, the rate-limiting enzyme of the catecholamine biosynthesis, was inhibited by the treatment of the MeOH extracts of Symplocarpus renifolius, Adenocaulon himalaicum and Mosla punctulata ($19.9{\sim}31.3%$ inhibition at $40\;{\mu}g/ml$). These results suggested that these bioactive herbal medicines exhibited partially an inhibitory effect on dopamine biosynthesis by the reduction of tyrosine hydroxylase activity in PC12 cells.

  • PDF

Inhibition of L-DOPA-Induced Increase in Dopamine Content by $(1R,9S)-{\beta}-Hydrastine$ Hydrochloride in PC12 cells

  • Yin, Shou-Yu;Lee, Jae-Joon;Kim, Yu-Mi;Jin, Chun-Mei;Yang, Yoo-Jung;Kang, Min-Hee;Lee, Myung-Koo
    • Natural Product Sciences
    • /
    • v.10 no.3
    • /
    • pp.119-123
    • /
    • 2004
  • The effects of BHSH on L-DOPA-induced increase in dopamine content in PC12 cells were investigated. L-DOPA treatment at $20\;or\;50\;{\mu}M$ increased dopamine content after both 24 and 48 h of incubation in PC12 cells. However, the co-treatments of BHSH $(10-50\;{\mu}M)$ with L-DOPA $(20\;or\;50\;{\mu}M)$ significantly inhibited the increase of dopamine content induced by L-DOPA. BHSH treatment at $10-50\;{\mu}M$ significantly inhibited basal aromatic L-amino acid decarboxylase (AADC) activity in a concentration-dependent manner at 15 min, and then AADC activity was rapidly recovered to the control level at about 2 h. These results indicate that the inhibition of AADC activity by BHSH was, in part, contributed to the early-stage decrease of dopamine content induced by LDOPA in PC12 cells. Taken together, it is proposed that the short-term inhibition of dopamine biosynthesis by BHSH was mediated by the regulation of tyrosine hydroxylace (TH).