• Title/Summary/Keyword: downhole application

Search Result 7, Processing Time 0.021 seconds

Parametric Optimization and Performance Analysis of Outer Rotor Permanent Magnet Flux Switching Machine for Downhole Application

  • Kumar, Rajesh;Sulaiman, Erwan;Jenal, Mahyuzie;Bahrim, Fatiah Shafiqah
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • To empower safe, economical and eco-friendly sustainable solution for enhancing oil and gas productivity from deep water reservoirs, new downhole technologies are recommended. Since electric machine plays leading role in the downhole application, it is a squeezing requirement for researchers to design and develop advanced electric machine. The Recent improvement in technology and uses of high-temperature magnets, permanent magnet flux switching machine (PMFSM) has become one of the appropriate contenders for offshore drilling but fewer designed for downhole due to ambient temperature. Therefore this comprehensive study deals with the design optimization and performance analysis of outer rotor PMFSM for the downhole application. Preliminary, the basic design parameters needed for machine design are calculated mathematically. Then the design refinement technique is implemented through deterministic method. Finally, initial and optimized performance of the machine is compared and as a result the output torque is increase from 16.39 Nm to 33.57 Nm while diminishing the cogging torque and PM weight up to 1.77 Nm and 0.79 kg, respectively. Therefore, it is concluded that purposed optimized design is suitable for the downhole application.

Borehole Seismics: Review and Its Application to Civil Engineering (시추공 탄성파탐사 및 이의 토목공학적 응용)

  • Chang Hyun-Sam;Lim Hae-Ryong;Hong Jae-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.176-201
    • /
    • 1999
  • Principles, data acquisition, data processing of four frequently used borehole seismic methods, i.e., downhole seismic, vertical seismic profiling(VSP), crosshole seismic, and seismic tomography, are reviewed briefly. Field data examples are presented and their application to civil engineering area was also discussed.

  • PDF

Analysis of Downhole Seismic Data Using Inversion Method (역산이론을 이용한 공내하향 탄성파시험 결과의 해석)

  • 목영진
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.29-38
    • /
    • 1994
  • A new method of analyzing downhole seismic data is presented. The method is based upon inverse theory and can be used to resolve wave velocity profiles to a much greater accuracy than possible with conventional analysis methods such as direct or interval measurements. In addition, use of inverse theory permits a rational basis for judging the quality of the velocity profile. Five case studies are presented to illustrate application of the inversion method at various geological formations.

  • PDF

Application of the tri-axial drill-bit VSP method to drilling for geological survey in civil engineering

  • Soma Nobukazu;Utagawa Manabu;Seto Masahiro;Asanuma Hiroshi
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.70-79
    • /
    • 2004
  • We have examined the applicability of the triaxial drill-bit VSP method (TAD-VSP) to the geological survey of possible sites for a high-level radioactive waste disposal repository. The seismic energy generated by a drill bit is measured by a downhole multi-component detector, and the resulting signals are processed to image the geological structure deep underground. In order to apply the TAD-VSP method to civil-engineering-scale drilling, we have developed a small but highly sensitive and precise three-component downhole seismic measurement system, and recorded drill-bit signals at a granite quarry. We have successfully imaged discontinuities in the granite, possibly related to fractures, as highly reflective zones. The discontinuities imaged by the TAD-VSP method correlate well with the results of other borehole observations. In conclusion, the TAD-VSP method is usable in geological investigations for civil engineering because the equipment is compact and it is simple to acquire the drill-bit signal.

A Study of Obtaining Reliable Travel Time Information in Downhole Seismic Method (다운홀 기법에서 신뢰성 있는 도달시간 정보 산출 방법에 대한 고찰)

  • Bang, Eun-Seok;Lee, Sei-Hyun;Kim, Jong-Tae;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.17-33
    • /
    • 2007
  • Downhole seismic method is widely used for obtaining shear wave velocity profile of a site because it is simple and economical. Determining accurate travel time of shear wave is very important to obtain reliable result in downhole seismic method. In this paper, comparison study of various travel time determination methods was performed. Numerical study and model chamber test were performed for effective comparison study. Signal traces were acquired by performing downhole test at each numerical simulation and soil box test. Travel time data for each signal traces were determined by using six different methods and Vs profiles were evaluated. Comparing travel time data and Vs profiles with the reference value, the first arrival picking method proved to be ambiguous and unreliable. Other methods also did not always provide accurate results and the magnitude of error was dependent on the signal to noise ratio. Cross-correlation method proved to be the most adequate method for the field application and it was verified additionally with field data.

Feasibility study on the Evaluation of the degree of consolidation using shear waves for soft clay deposits (전단파를 이용한 연약지반의 압밀도 평가기법 적용성 연구)

  • Youn, Jun-Ung;Kim, Jong-Tae;Lee, Jin-Sun;Kim, Dong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.442-451
    • /
    • 2008
  • The evaluation of field degree of consolidation on soft clays has been an important problem in geotechnical areas. Monitoring either settlements or pore water pressures has been widely applied in the filed, but occasionally they have some problems. This study addresses the suggestion and application of another method for evaluating the degree of consolidation using shear wave velocities. A research site where soft clay layers were consolidated by surcharging loads was chosen. Laboratory tests were performed to determine the relation between shear wave velocity and effective stress. Field seismic tests were conducted several times during the consolidation of the clay layers. The tests results show that the shear wave velocity increased significantly as clays consolidated. The shear wave velocities at each field stress states were derived from the laboratory results and the degree of consolidation was evaluated by comparing the shear wave velocities obtained by laboratory and field seismic methods. In most stress states, the degree of consolidation evaluated using the shear wave velocity matched well with that obtained from field settlement record, showing the potential of applying the method using shear waves in the evaluation of field degree of consolidation on soft clay deposits.

  • PDF

Synthetic Application of Seismic Piezo-cone Penetration Test for Evaluating Shear Wave Velocity in Korean Soil Deposits (국내 퇴적 지반의 전단파 속도 평가를 위한 탄성파 피에조콘 관입 시험의 종합적 활용)

  • Sun, Chang-Guk;Kim, Hong-Jong;Jung, Jong-Hong;Jung, Gyung-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.207-224
    • /
    • 2006
  • It has been widely known that the seismic piezo-cone penetration test (SCPTu) is one of the most useful techniques for investigating the geotechnical characteristics such as static and dynamic soil properties. As practical applications in Korea, SCPTu was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTu waveform data obtained from the testing sites, the first arrival times of shear waves and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity $(V_S)$ profiles with depth were derived based on the refracted ray path method based on Snell's law. Comparing the determined $V_S$ profile with the cone tip resistance $(q_t)$ profile, both trends of profiles with depth were similar. For the application of the conventional CPTu to earthquake engineering practices, the correlations between $V_S$ and CPTu data were deduced based on the SCPTu results. For the empirical evaluation of $V_S$ for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification index $(I_C)$, the authors suggested the $V_S-CPTu$ data correlations expressed as a function of four parameters, $q_t,\;f_s,\;\sigma'_{v0}$ and $B_q$, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the downhole seismic test during SCPTu and the conventional CPTu, it is shown that the $V_S-CPTu$ data correlations for all soils, clays and sands suggested in this study is applicable to the preliminary estimation of $V_S$ for the soil deposits at a part in Korea and is more reliable than the previous correlations proposed by other researchers.