• Title/Summary/Keyword: drilled core strength

Search Result 24, Processing Time 0.026 seconds

A Study on the Strength of Concrete Core in Existing Structures (실존 콘크리트 구조체의 코어 강도에 관한 연구)

  • Bae, Young-Mi;Kim, Min-Su;Kwon, Young-Wung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.611-614
    • /
    • 2005
  • This study concerns the strength of concrete cores drilled from existing structures. The test factors are core size, drilled position of core, concrete age and concrete strength. The test results are as follows; (1) Under the filled condition of curing, concrete strength for three years are larger than that of 28 days by $15\~20\%$ (2) According to the core size effect from diameter of 75mm to 150mm , the variation of core strength are by $8\~18\%$ (3) According to the wall height of 1m, the strength of lower point of wall is than larger that of the upper point by $5\~20\%$. (4) In Accessing the core strength of concrete as a basis, the effect of core size and drilling position should be considered.

  • PDF

Estimation of the Shaft Resistance of Rock-Socketed Drilled Shafts using Geological Strength Index (GSI를 이용한 암반에 근입된 현장타설말뚝의 주면저항력 산정)

  • Cho, Chun Whan;Lee, Hyuk Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.25-31
    • /
    • 2006
  • It is common to use the unconfined compressive strength (UCS) of intact rock to estimate the shaft resistance of rock socketed drilled shaft. Therefore the most design manuals give a guide to use the UCS of rock core to estimate the shaft resistance of rock-socketed drilled shaft. Recently, however the design manuals for highway bridge (KSCE, 2001) and of AASHTO (2000) were revised to use the UCS of rock mass with RQD instead of the UCS of rock core so that the estimated resistance could be representative of field conditions. Questions have been raised in application of the new guide to the domestic main bed rock types. The intrinsic drawbacks in terms of RQD were comprised in the questions, too. As the results, in 2002 the new guide in the design manual for highway bridge (KSCE, 2001) were again revised to use the UCS of rock core to estimate the shaft resistance of rock-socketed drilled shafts. In this paper, various methods which can estimate the UCS of rock mass from intact rock core were reviewed. It seems that among those, the Hoek-Brown method is very reliable and practical for the estimation of the UCS of rock mass from rock cores. As the results, using the Hoek-Brown failure criterion a modified guide for the estimation of the shaft resistance of rock-socketed drilled shafts was suggested in this paper. Through a case study it is shown that the suggested method gives a good agreement with the measured data.

A reliable approach for determining concrete strength in structures by using cores

  • Durmus, Aysegul;Ozturk, Hasan Tahsin;Durmus, Ahmet
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.463-473
    • /
    • 2013
  • As known, concrete classes are described as strength of standard specimens produced and kept in ideal conditions, not including reinforcement and not subjected to any load effect before. Under the circumstances, transforming core strengths to the standard specimen strength is necessary and considering all parameters, affected on the core strength, is inevitable. In fact, effects of the reinforcement and the load history on concrete strength are generally neglected when these mentioned transforms are performing. The main purpose of this paper is investigating the effects of the reinforcement and the load history on the core strength. This investigation is experimentally performed on cores drilled from specimens having different keeping conditions, reinforced, unreinforced, subjected to bending and central pressure in various proportions of failure load during specified periods. Obtained results show that the importance of these effects cannot be neglected.

A Study on the Strength Characteristics of Concrete Cores (콘크리트 코어의 강도특성에 관한 연구)

  • 권영웅;이성용;신정식;전익찬;김민수;박송철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.85-90
    • /
    • 2002
  • This paper concerns the within test strength of concrete cured under different conditions. Those conditions are water curing, field curing and cores drilled from the existing structures. The test factors are not only above cured conditions but also concrete ages of 3, 7, 14 and 28 days and concrete strength of 202, 252 and 650kgf/$\textrm{cm}^2$. The test results are as follows; (1) In spite of within test results, concrete strength is very different from curing states of concrete (2) The strength of cores drilled from existing structures are smaller than the strength of concrete cured in water by 3~4% and larger than that of concrete cured in field by 8~17% (3) Core strength is largely dependant on the curing state of top surface of concrete.

  • PDF

Concrete Compressive Strength Prediction from Deteriorating Apartment Site (노후아파트 현장에서의 콘크리트 압축강도 추정)

  • Lee Kyu-Dong;Rhim Hong-Chul;Rhim Byeong-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.155-158
    • /
    • 2006
  • Deduction of compressive strength in concrete members is very important to decide stability of structures. In this study, we compare the compressive strength of concrete between nondestructive test done to the building which was to be demolished at residential reconstruction site and destructive test of core specimen from the site. The result is more reliable because ore can compare the measurement of nondestructive tell with the result from destructive test using drilled cores. Compressive strength of each material was calculated with the result of rebound number test. In addition, we performed ultrasonic test for another result of compressive strength. And we made a comparative study of compressive strength of concrete drawn from both nondestructive and destructive tests.

  • PDF

Compressive Strength Development Model for Concrete Cured by Microwave Heating Form (마이크로웨이브 발열거푸집으로 양생된 콘크리트의 압축강도발현 모델)

  • Koh, Tae-Hoon;Moon, Do-Young;Bae, Jung-Myung;Yoo, Jung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.669-676
    • /
    • 2015
  • Time dependent model for prediction of compressive strength development of concrete cured by microwave heating form was presented in this study. The presented model is similar to the equation which is given in ACI 209R-92 but the constants which is dependent on cement type and curing method in the presented model are modified by the regression analysis of the experimental data. Laboratory scale concrete specimens were cast and cured by the microwave heating form and drilled cores extracted from the specimens were fractured in compression. The measured core strengths are converted to standard core and in-situ strengths. These in-situ strengths are used for the regression.

Physical and Chemical Characteristics of Pinkish Granite Core in the Mungyeong Area (문경지역 담홍색 화강암 코아의 물리적 및 화학적 특성)

  • 윤현수
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.234-240
    • /
    • 1994
  • The Wongyeong site, one of massive pinkish granite quarries in the Mungyeong area, was drilled to study the physical and chemical properties following the rock classification from fresh rock to highly, moderately and slightly weathered one. The physical properties such as specific gravity, absorption ratio, porosity and compressive strength were tested from the core samples. Specific gravity and absorption ratio are 2.37-2.64 and 0.27-1.87% respectively, while porosity and compressive strength are 0.70-4.38% and 110- 1, 695 kg/$cm^2$. With increased weathering, absorption ratio vs. porosity shows a positive correlation. The absorption ratio is in reverse proportion to compressive strength. Toward the surface in the drilled core, the $SiO_2$, CaO and $K_2O$ contents slightly decrease, but the $Al_2O_3$+FeO(t) contents increase by the enrichment of residual clay in the weathered rock.

  • PDF

An Empirical Approach for Improving the Estimation of the Concrete Compressive Strength Considered the Effect of Age and Drilled Core Sample (재령과 코어의 영향을 고려한 향상된 콘크리트 압축강도 추정기법의 경험적 제안)

  • Oh, Hongseob;Oh, Kwang-Chin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.103-111
    • /
    • 2015
  • To evaluate the compressive strength of concrete, rebound test and ultra pulse velocity methods as well as core test were widely used. The predicted strength effected by age, maturity and degradation of concrete, is a slight difference between in-situ concrete strength. The compressive strength of standard cylinder specimens and core samples by obtained from drilling will have a difference since the concrete is disturbed during the drilling by machinery. And the rebound number and ultra pulse velocity are also changed according to the age and maturity of concrete that effected to the surface hardness and microscpic minuteness. The authors performed the experimental work to reflect the age and core effect to the results from NDE test. The test results considering on the core and age of concrete were compaired with the proposed equation to predict the compressive strength.

An Experimental Study on the Influence of Heat of Hydration in High Strength Concrete during Hardening Process (고강도콘크리트의 내부온도이력과 경화콘크리트의 특성에 관한 실험적 연구)

  • 윤영수;이승훈;박희민;성상래;백승준;장일영;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.127-132
    • /
    • 1994
  • This study attemps to investigate the influence of heat of hydration occured during hardening on the strength development of high strength concrete. The concrete design strengths of 500kg/$\textrm{cm}^2$ and 700kg/$\textrm{cm}^2$ were considered to simulated the square columns having $80\times80cm$ and $100\times100cm$, respectively. Both standard curing and field curing specimen were prepared at the specified ages, and the cores were drilled out from the structure. The thermal sensors were installed into the specimen to measure the heat of hydration process occurred during the hardening. This paper tries to uncover the relationship between the temperature history of the concrete and strength development. The correlation of core strength and specimen strength with curing condition is also discussed. Further research is desired to enlight the relationship between strength and heat of hydration of high strength concrete.

  • PDF

Design of Large-scale Drilled Shaft (대구경 현장타설말뚝의 설계 사례)

  • Im, Chul-O;Choi, Young-Seok;Kwak, Ki-Seok;Jang, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.545-553
    • /
    • 2009
  • A lot of long-span marine bridge, which connects land to island or island to island, are being designed and constructed lately in south-west coast in South Korea. In the past, caisson foundations in marine were mainly adopted in construction and stability aspect, however, nowadays with development of pile construction technology, drilled shaft foundations are mainly adopted. As the long span cable stayed bridge and suspension bridge applied with lots of loads are being designed, the scale of pile foundations are getting larger. As the construction cost of substructure including foundation in marine bridges is too high, the appropriate evaluation of the axial bearing capacity of pile becomes a core factor to decide the construction cost of foundation if the drilled shaft is adopted as foundation type of bridge. The evaluation values of skin friction and end bearing capacity of drilled shaft in weathered rock suggested in south Korea are only to introduce the foreign specifications, and most of them are designed in a kind of hard soil layer. Also the allowable load of pile section is less than the expected bearing capacity of pile in the soil condition since the allowable capacity of pile is undervalued. Recently in order to improve this factor the bi-axial hydraulic load test of pile was taken, the data of load transfer analysis of pile, unit of skin friction and end bearing capacity are accumulated. In our country, the design of piles are made with ASD, however, LRFD considering service, strength and extreme state was adopted in Incheon Grand Bridge implemented with BTL, and the research to systematize the resistance coefficient appropriate at home country are being progressed.

  • PDF