• 제목/요약/키워드: drop kinetic energy

검색결과 48건 처리시간 0.019초

나무 아래 빗방울(雨滴)의 물리적 특성변화 분석 (Evaluation of Changesin the Physical Characteristics of Raindrops Under a Canopy in Central Korea)

  • 김진관;김민석;양동윤;임영신
    • 한국지형학회지
    • /
    • 제23권3호
    • /
    • pp.105-122
    • /
    • 2016
  • To evaluate the changes in the physical characteristics of open rainfall related to canopy effects and rainfall intensity in Korea, the terminal velocity of raindrops and drop size distributions(DSD) were continuously measured by an optical-laser disdrometer in an open site(Op) and in two forest stands(Th1: Larix leptolepis, Th2: Pinus koraiensis) during five rainfall events in 2008. The terminal velocity, DSD and two forms of kinetic energy(KE, $Jm^{-2}$ $mm^{-1}$; KER, $Jm^{-2}$ $h^{-1}$) of open rainfall drops were determined and were compared with those of throughfall drops under two different canopy heights. The effects of the canopy and rainfall intensity, together with wind speed, on the changes in drop size and kinetic energy of throughfall were evaluated. Throughfall drops were larger than open rainfall drops. The distribution of terminal velocities for the drop sizes measured at Th2 was lower than that at Op; however, at Th1 the distribution was similar to that at Op. The total kinetic energy of throughfall at Th1 and Th2 was higher than the total kinetic energy of open rainfall, and the kinetic energy distribution for the drop sizes wassimilar to the drop size distribution. The observed throughfall-KER at Th1 was lower than an estimate previously produced using a model. The overestimation from the modeled value at Th1 was likely to be due to overestimated values of a square root transformation of fall height and its coefficient in the model because the distributions of terminal velocity for the drop size measured at Th1 were similar to those of open rainfall.

An improved 1-D thermal model of parabolic trough receivers: Consideration of pressure drop and kinetic energy loss effects

  • Yassine Demagh
    • Advances in Energy Research
    • /
    • 제8권1호
    • /
    • pp.21-39
    • /
    • 2022
  • In this study, the first law of thermodynamics was used to establish a one-dimensional (1-D) thermal model for parabolic trough receiver (PTR) taking into account the pressure drop and kinetic energy loss effects of the heat transfer fluid (HTF) flowing inside the absorber tube. The validation of the thermal model with data from the SEGS-LS2 solar collector-test showed a good agreement, which is consistent with the previously established models for the conventional straight and smooth (CSS) receiver where the effects of pressure drop and kinetic energy loss were neglected. Based on the developed model and code, a comparative study of the newly designed parabolic trough S-curved receiver versus the CSS receiver was conducted and solar unit's performances were analyzed. Without any supplementary devices, the S-curved receiver enhances the performance of the parabolic trough module, with a maximum of 0.16% compared to CSS receiver with the same sizes and mass flow rates. Thermal losses were reduced by 7% due to the decrease in the temperature of the outer surface of the receiver tube. In addition, it has been shown that from a mass flow rate of 9.5 kg/s the heat losses of the S-curved receiver remain unchanged despite the improvement in the heat transfer rate.

낙하 충격에 의한 풍화토의 비산먼지 발생 특성 분석 (Analysis of dust emission characteristic by drop impact on decomposed granite soil)

  • 민슬기;손영환;박재성;노수각;봉태호
    • 한국농공학회논문집
    • /
    • 제56권3호
    • /
    • pp.39-45
    • /
    • 2014
  • Dust is mostly caused by human activity. The effect of natural factors on dust emission were studied in many research, but the little effort in researching artificial factors of dust emission. The object of study is to analysis dust emission characteristic by drop impact. Particle matter $10{\mu}m$ ($PM_{10}$) was measured by drop impact on paved soil with changing drop height, weight and drop size. Increasing drop height cause more $PM_{10}$ emission. Increasing drop weight cause more $PM_{10}$ emission but had limit weight for increasing dust emission. Because the exceed kinetic energy of drop weight penetrate the soil surface. The limit perimeter was exist that separating $PM_{10}$ emission aspect. Under limit perimeter, $PM_{10}$ emission was increasing while perimeter was increasing, but over limit perimeter showed the opposite aspect. Regression equations for estimating $PM_{10}$ with kinetic energy and perimeter were made under limit perimeter and over limit perimeter. The $R^2$ of those equations were 0.784, 0.743. The error has occurred between measured $PM_{10}$ and calculated $PM_{10}$ in the equation under limit perimeter. But using equation of case for over limit perimeter, PM10 can be estimated with kinetic energy and drop perimeter.

충격 신호 분석에 기반한 우적의 운동 에너지율 (Kinetic Energy Rate of the Rain Drops Based on the Impact Signal Analysis)

  • 마르시아 모라에스;히까르도 테노리오;엘사 삼파이오;움베르또 바르보사;까를로스 산또스;윤홍주;권병혁
    • 한국전자통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.743-754
    • /
    • 2019
  • 지표면 침식 잠재력은 비가 내린 영향으로 토양에 전달 된 운동 에너지로 평가할 수 있다. 충격 신호를 분석할 수 있는 디즈드로미터로 우적 에너지율 관계식을 산출하였다. 대륙 강수의 97%와 해양 강수의 95%가 강우량과 강우율의 관계로 이루어진 이 지수 방정식으로 설명되었다. 이 관계식의 지수는 강우 유형에 의존하지 않지만 계수는 강우 사건에 따라 조정될 수 있는 변동을 나타냈다. 이 관계식은 결정 계수, 평균 절대 오차 및 신뢰 오차에 의해 검증되었다. 특정 유형의 토양과 관련된 강수의 운동 에너지는 강우로 인한 침식의 가능성을 결정할 수 있다.

Raindrop Size Distribution Over Northeastern Coast of Brazil

  • Tenorio Ricardo Sarmento;Kwon Byung-Hyuk;Silva Moraes Marcia Cristina da
    • Journal of information and communication convergence engineering
    • /
    • 제4권1호
    • /
    • pp.46-52
    • /
    • 2006
  • Precipitation measurement with ground-based radar needs an information of the raindrop size distribution (RSD) characteristics. A 10-month dataset was collected in tropical Atlantic coastal zone of northeastern Brazil where the weather radar was installed. The number of drop was mainly recorded in 300 - 500 drop $mm^{-3}$, of which the maximum was registered around 1.1 mm drop diameter.

우적 크기 탐지기 신호로 산출한 정량적 운동에너지 (Quantitative Kinetic Energy Estimated from Disdrometer Signal)

  • 마르시아 모라에스;엘사 삼파이오;히까르도 테노리오;윤홍주;권병혁
    • 한국전자통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.153-160
    • /
    • 2020
  • Brazil Alagoas 주의 동부 지역에서 우적 크기를 측정하는 디즈드로미터(disdrometer)로 산출한 강우량과 강우율의 관계로 우적의 역학 에너지가 예측되었다. 강우의 시작과 끝에서 측정되는 약한 강우 강도에서는 지수 형태의 방정식이 큰 우적의 영향을 억제하였다. 빗방울의 역학 에너지는 거의 모든 강우 강도 범위에서 과소평가 되었다. 결정 계수, 평균 절대 오차, 상대 오차 비율, 평균 절대 오차, 평균 제곱 오차, Willmott의 일치 지수 및 신뢰 지수와 같은 성과 지표에 기반을 두어 예측된 강우 역학 에너지가 유용한 결과로 평가되었다.

주름관에서의 압력강하와 마찰손실 계측에 관한 연구 (The study on the measurement for the pressure drop and friction factor of corrugated metal pipes)

  • 윤영선;강준원;유재석;김현정
    • 한국가시화정보학회지
    • /
    • 제4권2호
    • /
    • pp.76-80
    • /
    • 2006
  • The data for friction factor of the pipe correlated by Reynolds number and relative roughness have been reported well as a Moody chart. However, the results for corrugated shapes have been not investigated sufficiently. In this research, therefore, the pressure drop and friction factor are obtained. Flexible metal tubes with corrugations for the measurement are made of stainless steel plates. The kinds of tubes for the measurement are 5 annular types and helical types. The pressure drop & the velocity of the flow are obtained by micromanometer & digital pressure sensor, supplying dry air at several steps. Then the pressure drop is calculated for each tube, using the obtained data. The result shows that the pressure drop is strongly influenced by the viscous dissipation of kinetic energy due to the circulation of flows, rather than a viscous friction loss. The pressure drop increased consistently as the Reynolds number increases.

  • PDF

고압 호스에서 굽힘의 각도가 압력 변화에 미치는 영향에 대한 수치해석적 연구 (Numerical Study on The Effect of Bending Angle on Pressure Change in High Pressure Hose)

  • 홍기배;김민석;유홍선
    • 한국산업융합학회 논문집
    • /
    • 제25권1호
    • /
    • pp.61-70
    • /
    • 2022
  • Fire damage time in high-rise buildings and wildland fire increasing every year. The use of high-pressure fire pumps is required to effectively extinguish fires. Reflecting the curvature effect of the fire hose occurring at the actual fire fighting site, this study provides a database of pressure drop, discharge velocity and maximum discharge height through C FD numerical analysis and it can provide using standards for fire extinguishing. Two Reynolds numbers of 200000 and 400000 were numerically analyzed at 0° -180° bending with water of 25℃ as a working fluid in hoses with a diameter of 65mm, a length of 15m, and a radius of curvature of 130mm. Realizable k-ε turbulence model was used and standard wall function was used. The pressure drop increases as the bending angle increases, and the maximum value at 90° and then decreases. The increasing rate is greater than the decrease. The velocity of the secondary flow also decreases after having the maximum value at 90°. The decreasing rate is greater than the increase. The turbulent kinetic energy increases to 120° and decreases with the maximum value. Pressure drop, velocity of the secondary flow, and turbulence kinetic energy are measured larger in the second bending region than in the first bending region.

오리피스 링이 부착된 원관내 주기적인 난류운동에 대한 수치해석 (Numerical Study of Periodic Turbulent Flow for a Pipe with an Orifice Ring)

  • 맹주성;양시영;서현철
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2294-2303
    • /
    • 1993
  • This paper investigated the characteristics of the turbulent incompressible flow past the orifice ring in an axi-symmetric pipe. The flow field was the turbulent pulsatile flow for Reynolds number of $2{\times}10^{5}$ which was defined based on the maximum velocity and the pipe diameter at the inlet, with oscillating frequence $(f_{os})=1/4{\pi}$ which was considered as quasi-steady state frequence. In the present investigation, finite analytic method was used to solve the governing equations in Navier Stokes and turbulent transport formulations. Particularly at high Reynolds number and low oscillation frequency, the effects of orifice ring on the flow were numerically investigated. The separation zone behind the orifice ring during the acceleration phase was found to be decreased. However, during the deceleration phase, the separation behind the orifice ring for pulsatile flow continuously grow to a size even larger than that in steady flow. The pressure drop in steady flow was found to be constant and always positive while for pulsatile flow the pressure drop change with time. And large turbulent kinetic energy, dissipation rate were found to be located in the region where the flow passes through the orifics ring. The maximum turbulent kinetic energy, generally occurs along the shear layer where the velocity gradient is large.

선풍기의 날개 수에 따른 공기 유동해석 (Analysis of the Sir Flow due to the Number of Electric Fan Blades)

  • 조재웅;한문식
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.107-112
    • /
    • 2012
  • Air flow and its pressure at electric fan according to three, four and five blades are analyzed in this study. As the number of blades increases at the same condition of specification, air tends to converge and becomes natural wind but higher power is consumed. And the velocity of wind is decreased as the space between winds becomes narrow. The turbulent flow is happened in the center of the body of revolution and the kinetic energy becomes largest in case of three blades. The pressure is decreased than atmospheric pressure from fan to outlet. As the number of blades increases, the pressure drop becomes smaller and is smallest in case of the fan with three blades. As the study result, The electric fan with three blades is thought to be effective in view of power consumption and design.