• Title/Summary/Keyword: drug target

Search Result 716, Processing Time 0.041 seconds

Target Prediction Based On PPI Network

  • Lee, Taekeon;Hwang, Youhyeon;Oh, Min;Yoon, Youngmi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.65-71
    • /
    • 2016
  • To reduce the expenses for development a novel drug, systems biology has been studied actively. Target prediction, a part of systems biology, contributes to finding a new purpose for FDA(Food and Drug Administration) approved drugs and development novel drugs. In this paper, we propose a classification model for predicting novel target genes based on relation between target genes and disease related genes. After collecting known target genes from TTD(Therapeutic Target Database) and disease related genes from OMIM(Online Mendelian Inheritance in Man), we analyzed the effect of target genes on disease related genes based on PPI(Protein-Protein Interactions) network. We focused on the distinguishing characteristics between known target genes and random target genes, and used the characteristics as features for building a classifier. Because our model is constructed using information about only a disease and its known targets, the model can be applied to unusual diseases without similar drugs and diseases, while existing models for finding new drug-disease associations are based on drug-drug similarity and disease-disease similarity. We validated accuracy of the model using LOOCV of ten times and the AUCs were 0.74 on Alzheimer's disease and 0.71 on Breast cancer.

Drug Target Protein Prediction using SVM (SVM을 사용한 약물 표적 단백질 예측)

  • Jung, Hwie-Sung;Hyun, Bo-Ra;Jung, Suk-Hoon;Jang, Woo-Hyuk;Han, Dong-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.17-21
    • /
    • 2007
  • Drug discovery is a long process with a low rate of successful new therapeutic discovery regardless of the advances in information technologies. Identification of candidate proteins is an essential step for the drug discovery and it usually requires considerable time and efforts in the drug discovery. The drug discovery is not a logical, but a fortuitous process. Nevertheless, considerable amount of information on drugs are accumulated in UniProt, NCBI, or DrugBank. As a result, it has become possible to try to devise new computational methods classifying drug target candidates extracting the common features of known drug target proteins. In this paper, we devise a method for drug target protein classification by using weighted feature summation and Support Vector Machine. According to our evaluation, the method is revealed to show moderate accuracy $85{\sim}90%$. This indicates that if the devised method is used appropriately, it can contribute in reducing the time and cost of the drug discovery process, particularly in identifying new drug target proteins.

  • PDF

Lipid A as a Drug Target and Therapeutic Molecule

  • Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.510-516
    • /
    • 2015
  • In this review, lipid A, from its discovery to recent findings, is presented as a drug target and therapeutic molecule. First, the biosynthetic pathway for lipid A, the Raetz pathway, serves as a good drug target for antibiotic development. Several assay methods used to screen for inhibitors of lipid A synthesis will be presented, and some of the promising lead compounds will be described. Second, utilization of lipid A biosynthetic pathways by various bacterial species can generate modified lipid A molecules with therapeutic value.

Drug Target Identification and Elucidation of Natural Inhibitors for Bordetella petrii: An In Silico Study

  • Rath, Surya Narayan;Ray, Manisha;Pattnaik, Animesh;Pradhan, Sukanta Kumar
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.241-254
    • /
    • 2016
  • Environmental microbes like Bordetella petrii has been established as a causative agent for various infectious diseases in human. Again, development of drug resistance in B. petrii challenged to combat against the infection. Identification of potential drug target and proposing a novel lead compound against the pathogen has a great aid and value. In this study, bioinformatics tools and technology have been applied to suggest a potential drug target by screening the proteome information of B. petrii DSM 12804 (accession No. PRJNA28135) from genome database of National Centre for Biotechnology information. In this regards, the inhibitory effect of nine natural compounds like ajoene (Allium sativum), allicin (A. sativum), cinnamaldehyde (Cinnamomum cassia), curcumin (Curcuma longa), gallotannin (active component of green tea and red wine), isoorientin (Anthopterus wardii), isovitexin (A. wardii), neral (Melissa officinalis), and vitexin (A. wardii) have been acknowledged with anti-bacterial properties and hence tested against identified drug target of B. petrii by implicating computational approach. The in silico studies revealed the hypothesis that lpxD could be a potential drug target and with recommendation of a strong inhibitory effect of selected natural compounds against infection caused due to B. petrii, would be further validated through in vitro experiments.

Systematic Approach for Analyzing Drug Combination by Using Target-Enzyme Distance

  • Park, Jaesub;Lee, Sunjae;Kim, Kiseong;Lee, Doheon
    • Interdisciplinary Bio Central
    • /
    • v.5 no.2
    • /
    • pp.3.1-3.7
    • /
    • 2013
  • Recently, the productivity of drug discovery has gradually decreased as the limitations of single-target-based drugs for various and complex diseases become exposed. To overcome these limitations, drug combinations have been proposed, and great efforts have been made to predict efficacious drug combinations by statistical methods using drug databases. However, previous methods which did not take into account biological networks are insufficient for elaborate predictions. Also, increased evidences to support the fact that drug effects are closely related to metabolic enzymes suggested the possibility for a new approach to the study drug combinations. Therefore, in this paper we suggest a novel approach for analyzing drug combinations using a metabolic network in a systematic manner. The influence of a drug on the metabolic network is described using the distance between the drug target and an enzyme. Target-enzyme distances are converted into influence scores, and from these scores we calculated the correlations between drugs. The result shows that the influence score derived from the targetenzyme distance reflects the mechanism of drug action onto the metabolic network properly. In an analysis of the correlation score distribution, efficacious drug combinations tended to have low correlation scores, and this tendency corresponded to the known properties of the drug combinations. These facts suggest that our approach is useful for prediction drug combinations with an advanced understanding of drug mechanisms.

Strategies and Advancement in Antibody-Drug Conjugate Optimization for Targeted Cancer Therapeutics

  • Kim, Eunhee G.;Kim, Kristine M.
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.493-509
    • /
    • 2015
  • Antibody-drug conjugates utilize the antibody as a delivery vehicle for highly potent cytotoxic molecules with specificity for tumor-associated antigens for cancer therapy. Critical parameters that govern successful antibody-drug conjugate development for clinical use include the selection of the tumor target antigen, the antibody against the target, the cytotoxic molecule, the linker bridging the cytotoxic molecule and the antibody, and the conjugation chemistry used for the attachment of the cytotoxic molecule to the antibody. Advancements in these core antibody-drug conjugate technology are reflected by recent approval of Adectris$^{(R)}$(anti-CD30-drug conjugate) and Kadcyla$^{(R)}$(anti-HER2 drug conjugate). The potential approval of an anti-CD22 conjugate and promising new clinical data for anti-CD19 and anti-CD33 conjugates are additional advancements. Enrichment of antibody-drug conjugates with newly developed potent cytotoxic molecules and linkers are also in the pipeline for various tumor targets. However, the complexity of antibody-drug conjugate components, conjugation methods, and off-target toxicities still pose challenges for the strategic design of antibody-drug conjugates to achieve their fullest therapeutic potential. This review will discuss the emergence of clinical antibody-drug conjugates, current trends in optimization strategies, and recent study results for antibody-drug conjugates that have incorporated the latest optimization strategies. Future challenges and perspectives toward making antibody-drug conjugates more amendable for broader disease indications are also discussed.

Systematic Target Screening Revealed That Tif302 Could Be an Off-Target of the Antifungal Terbinafine in Fission Yeast

  • Lee, Sol;Nam, Miyoung;Lee, Ah-Reum;Lee, Jaewoong;Woo, Jihye;Kang, Nam Sook;Balupuri, Anand;Lee, Minho;Kim, Seon-Young;Ro, Hyunju;Choi, Youn-Woong;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.234-247
    • /
    • 2021
  • We used a heterozygous gene deletion library of fission yeasts comprising all essential and non-essential genes for a microarray screening of target genes of the antifungal terbinafine, which inhibits ergosterol synthesis via the Erg1 enzyme. We identified 14 heterozygous strains corresponding to 10 non-essential [7 ribosomal-protein (RP) coding genes, spt7, spt20, and elp2] and 4 essential genes (tif302, rpl2501, rpl31, and erg1). Expectedly, their erg1 mRNA and protein levels had decreased compared to the control strain SP286. When we studied the action mechanism of the non-essential target genes using cognate haploid deletion strains, knockout of SAGA-subunit genes caused a down-regulation in erg1 transcription compared to the control strain ED668. However, knockout of RP genes conferred no susceptibility to ergosterol-targeting antifungals. Surprisingly, the RP genes participated in the erg1 transcription as components of repressor complexes as observed in a comparison analysis of the experimental ratio of erg1 mRNA. To understand the action mechanism of the interaction between the drug and the novel essential target genes, we performed isobologram assays with terbinafine and econazole (or cycloheximide). Terbinafine susceptibility of the tif302 heterozygous strain was attributed to both decreased erg1 mRNA levels and inhibition of translation. Moreover, Tif302 was required for efficacy of both terbinafine and cycloheximide. Based on a molecular modeling analysis, terbinafine could directly bind to Tif302 in yeasts, suggesting Tif302 as a potential off-target of terbinafine. In conclusion, this genome-wide screening system can be harnessed for the identification and characterization of target genes under any condition of interest.

Antimicrobial resistance in Klebsiella pneumoniae: identification of bacterial DNA adenine methyltransferase as a novel drug target from hypothetical proteins using subtractive genomics

  • Umairah Natasya Mohd Omeershffudin;Suresh Kumar
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.47.1-47.13
    • /
    • 2022
  • Klebsiella pneumoniae is a gram-negative bacterium that is known for causing infection in nosocomial settings. As reported by the World Health Organization, carbapenem-resistant Enterobacteriaceae, a category that includes K. pneumoniae, are classified as an urgent threat, and the greatest concern is that these bacterial pathogens may acquire genetic traits that make them resistant towards antibiotics. The last class of antibiotics, carbapenems, are not able to combat these bacterial pathogens, allowing them to clonally expand antibiotic-resistant strains. Most antibiotics target essential pathways of bacterial cells; however, these targets are no longer susceptible to antibiotics. Hence, in our study, we focused on a hypothetical protein in K. pneumoniae that contains a DNA methylation protein domain, suggesting a new potential site as a drug target. DNA methylation regulates the attenuation of bacterial virulence. We integrated computational-aided drug design by using a bioinformatics approach to perform subtractive genomics, virtual screening, and fingerprint similarity search. We identified a new potential drug, koenimbine, which could be a novel antibiotic.

Preparation and Destabilization of Target-Sensitive Liposomes (표적 민감성 리포좀의 제조와 약물 방출)

  • 양진모;양지원김종득최태부
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.428-434
    • /
    • 1995
  • Target-sensitive(TG-S) liposomes, which have the antibodies coupled on the surface of liposome and can release their entrapped contents by the binding of antibodies with the specigic target cells, were prepared and employed to study the release of calcein and the selective delivery of an anticancer agent, doxorubicin(DOX). The monoclonal antibody, Y3, used for the preparation of the TG-S liposome was one against major histocompatibility complex class 1 of mouse(MHCI, H-2Kbtype) and the target cells were EL-4 and RMA, which have the MHC1, H-2Kbtype on their membrane surfacem. The release of calcein from TG-S liposome occurred when the target cells were contacted with liposomes and it was proportionally increased with the rise of binding capacity of antibody coupled on the surface of liposome to the target cells. The experimental results of drug delivery were similar to the cases of calcein release. The viability of specific target cell, EL-4 with liposomal DOX was not so different from that with the free DOX, while for the non-specific target cell, Yacl(H-2Kf), the cell viability with Iiposomal DOX was much higher than that with free DOX. This shows the fact that the liposomal DOX can be efficiently delivered to the specific target cells, while it was not the case for the non-specific target cells. And the drug delivery was lnhibited when the free antibody of Y3 was added in the contact process between EL-4 and TG-S liposomes, which means the drug delivery occurred mainly by the destabilization of TG-S liposomes. From these results, we could conclude that the selective drug delivery to specific target cell using the TG-S liposome would be feasible.

  • PDF

Drug Target Identification of a natural anticancer agent plumbagin using $GPScreen^{TM}$: An innovative Technology for Drug Target Discovery using Drug-induced haploinsufficiency in S. pombe Genome-wide Heterozygous Deletion Mutant Library ($GPScreen^{TM}$ 이용한 천연 항암물질인 plumbagin의 약물 작용점 연구: 분열 효모인 S. pombe 유전체 이종 결손 변이 라이브러리에서의 약물에 의한 haploinsufficiency를 이용한 약물 작용점 규명을 위한 혁신 기술)

  • Lee, Ju-Hee;Yeon, Ji-Hyun;Yoon, Pyoung-Oh;Roh, Whi-Jae;Park, Han-Oh;Kim, Dong-Myung
    • 한국약용작물학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.106-107
    • /
    • 2011
  • PDF