• Title/Summary/Keyword: durability factor

Search Result 442, Processing Time 0.024 seconds

A Study of the Design Criterion of a Steel Pulley for an Automobile (자동차용 강재 풀리의 설계 기준에 대한 연구)

  • Hwang B.C.;Jang J.D.;Joo I.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.71-74
    • /
    • 2005
  • More than five pulleys are used in an automobile, such as crankshaft, water pump, air-con compressor, fan and power steering pump pulley. These pulleys are parts that need durability until retiring a car. But there is no design criterion for durability, so pulleys are designed by the experience of designer and trial and error. So, in this study, we carried out stress analysis at durability test condition and compared analysis results to durability test results. It is found that the design criterion for durability is defined as a safety factor and a safety factor is different according to the distance between the center line of v-grooves and the mating surface.

  • PDF

Experimental Study on Correlation Analysis of Air-void, Air-spacing factor and Long-term Durability for Roller-compacted Concrete pavement (롤러 전압 콘크리트 포장의 공기량 및 기포간격계수와 장기 내구성의 상관관계 분석을 위한 실험적 연구)

  • Lee, Jun Hee;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.63-72
    • /
    • 2016
  • PURPOSES : The use of roller-compacted concrete pavement (RCCP) is an environmentally friendly method of construction that utilizes the aggregate interlock effect by means of a hydration reaction and roller compacting, demonstrating a superb structural performance with a relatively small unit water content and unit cement content. However, even if an excellent structural performance was secured through a previous study, the verification research on the environmental load and long-term durability was conducted under unsatisfactory conditions. In order to secure longterm durability, the construction of an appropriate internal air-void structure is required. In this study, a method of improving the long-term durability of RCCP will be suggested by analyzing the internal air-void structure and relevant durability of roller-compacted concrete. METHODS : The method of improving the long-term durability involves measurements of the air content, air voids, and air-spacing factor in RCCP that experiences a change in terms of the kind of air-entraining agent and chemical admixture proportions. This test should be conducted on the basis of test criteria such as ASTM C 457, 672, and KS F 2456. RESULTS : Freezing, thawing, and scaling resistance tests of roller compacted concrete without a chemical admixture showed that it was weak. However, as a result of conducting air entraining (AE) with an AE agent, a large amount of air was distributed with a range of 2~3%, and an air void spacing factor ranging from 200 to $300{\mu}m$ (close to $250{\mu}m$) coming from PCA was secured. Accordingly, the freezing and thawing resistance was improved, with a relative dynamic elastic modulus of more than 80%, and the scaling resistance was improved under the appropriate AE agent content rate. CONCLUSIONS : The long-term durability of RCCP has a direct relationship with the air-void spacing factor, and it can be secured only by ensuring the air void spacing factor through air entraining with the inclusion of an AE agent.

Durability Evaluation of RC Structures subjected. to Chloride Attack (철근콘크리트 구조물의 염해 내구성 평가)

  • 백승우;남진원;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.663-668
    • /
    • 2003
  • In this paper, an environmental factor and a durability resistance factor which adapts the concept of the Load Resistance Factor Design for safety design of RC structures is derived and a basic principle of a durability evaluation for RC structures using the factors is proposed. It is shown that durability of RC structures can be evaluated by comparing predicted value of chloride ion concentration with limit value of concentration for steel corrosion generation in reinforcement steel position and the durability of concrete manufactured for the RC structures can be also evaluated by comparing characteristic diffusion coefficient of concrete with predicted diffusion coefficient during mixture design.

  • PDF

Estimation of frost durability of recycled aggregate concrete by hybridized Random Forests algorithms

  • Rui Liang;Behzad Bayrami
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.91-107
    • /
    • 2023
  • An effective approach to promoting sustainability within the construction industry is the use of recycled aggregate concrete (RAC) as a substitute for natural aggregates. Ensuring the frost resilience of RAC technologies is crucial to facilitate their adoption in regions characterized by cold temperatures. The main aim of this study was to use the Random Forests (RF) approach to forecast the frost durability of RAC in cold locations, with a focus on the durability factor (DF) value. Herein, three optimization algorithms named Sine-cosine optimization algorithm (SCA), Black widow optimization algorithm (BWOA), and Equilibrium optimizer (EO) were considered for determing optimal values of RF hyperparameters. The findings show that all developed systems faithfully represented the DF, with an R2 for the train and test data phases of better than 0.9539 and 0.9777, respectively. In two assessment and learning stages, EO - RF is found to be superior than BWOA - RF and SCA - RF. The outperformed model's performance (EO - RF) was superior to that of ANN (from literature) by raising the values of R2 and reducing the RMSE values. Considering the justifications, as well as the comparisons from metrics and Taylor diagram's findings, it could be found out that, although other RF models were equally reliable in predicting the the frost durability of RAC based on the durability factor (DF) value in cold climates, the developed EO - RF strategy excelled them all.

Effect of Air Void Organization to Frost-Resistance in High-Strength Concrete (고강도 콘크리트의 동해저항에 관한 기포조직의 영향)

  • 김생빈;홍찬홈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.5-10
    • /
    • 1991
  • This study was performed to find out the effect about the spacing factor and durability factor to evaluate the durability of concrete in high-strength concrete with freezing and thawing as following each condition, 1) unit cement content : 500kg/$\textrm{m}^3$, 550kg/$\textrm{m}^3$ 2) water/cement ratio : 25%, 30%, 35% 3) air content : below 1.5%, 1.6~3.5%, 4~6%, over 7% From the results tested, a variation of air content was more effective to the durability of concrete than that of water/cement ratio and unit cement content.

  • PDF

CAE Procedure of Engine Balance Shaft Housing for Prediction of Durability (엔진 밸런스 샤프트 하우징의 내구성 평가를 위한 CAE 절차 개발)

  • Choi, Hang-Jip
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.133-138
    • /
    • 2007
  • The balance shaft housing in the recent engines tends to have the high cycle fatigue crack caused by increased engine power. In this paper, a CAE procedure is introduced to predict the durability of the balance shaft housing. The procedure is performed through two analysis steps. In the first step, the multibody dynamic simulation is used to obtain more accurate loading boundary conditions applied to the finite element model for the following step. Next, the finite element analysis is performed to predict the durability of the balance shaft housing through the calculation of the safety factor. Through this CAE procedure, the revised balance shaft housing was developed to improve the durability. And the durability of the housing was confirmed experimentally.

Durability Study on Structural Strength due to the Shape of Excavator Wheel (굴삭기휠의 형상별 구조 강도에 대한 내구성 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.166-174
    • /
    • 2013
  • This study investigates the strength durability on the results of structural and vibration analysis due to the shape of excavator wheel. As model 2 has the least stress by comparing three models with maximum equivalent stress, model 2 has most durability among three models at static analysis. Maximum equivalent stress is shown at the bottom part contacted with ground and this part on wheel is most affected by load in cases of all models. Safety factor can be decided with the value of 2.3 by considering the yield stress of this model. The range of maximum harmonic response frequencies becomes 6900 to 7000Hz. As model 2 has the least total deformation and equivalent stress at these critical frequencies, model 2 has the most durability at vibration analysis among three models. The structural and vibration analysis results in this study can be effectively utilized with the design of excavator wheel by investigating prevention and durability against its damage.

Optimal mix design of air-entrained slag blended concrete considering durability and sustainability

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.99-109
    • /
    • 2021
  • Slag blended concrete is widely used as a mineral admixture in the modern concrete industry. This study shows an optimization process that determines the optimal mixture of air-entrained slag blended concrete considering carbonation durability, frost durability, CO2 emission, and materials cost. First, the aim of optimization is set as total cost, which equals material cost plus CO2 emission cost. The constraints of optimization consist of strength, workability, carbonation durability with climate change, frost durability, range of components and component ratio, and absolute volume. A genetic algorithm is used to determine optimal mixtures considering aim function and various constraints. Second, mixture design examples are shown considering four different cases, namely, mixtures without considering carbonation (Case 1), mixtures considering carbonation (Case 2), mixtures considering carbonation coupled with climate change (Case 3), and mixtures of high strength concrete (Case 4). The results show that the carbonization is the controlling factor of the mixture design of the concrete with ordinary strength (the designed strength is 30MPa). To meet the challenge of climate change, stronger concrete must be used. For high-strength slag blended concrete (design strength is 55MPa), strength is the control factor of mixture design.

Brand Relationship Formation Process of Apparel Products(Part I) (의류제품의 상표관계 경로모형 연구(제1보))

  • 조희라;이선재
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.6
    • /
    • pp.790-800
    • /
    • 2002
  • Brand relationship, which refers to the bond between brands and consumers, plays an important role in marketing due to its positive or negative effects on consumer behavior. The goals of this research were 1) to identify the types of brand relationships between young female consumers and apparel brands, and 2) to examine the influence of brand relationships over consumers'favorable attitudes and strong attachment (durability) to the brands. For the purpose of this study, ten casual wear brands, which are highly perceived by and popular with high school and university female students, were chosen by a preliminary inquiry. And then focused group interviews were performed to develop a questionnaire. The main examination was performed from August 20 to September 12, 2000, using five types of surveys each of which contained two brands. SPSS 8.0 was used for factor analysis and recession analysis. Four types of brand relationships were categorized based on the results of factor analysis: self-devotion, intimacy, rejection and trust. Each factor showed significant influence on both positive altitude and durability.

Freezing and Thawing Properties of Polypropylene Fiber Reinforced Eco-concrete (폴리프로필렌 섬유보강 에코콘크리트의 동결융해 특성)

  • Sung Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.59-66
    • /
    • 2006
  • This study is performed to evaluate freezing and thawing properties of polypropylene fiber reinforced eco-concrete using soil, natural coarse aggregate, soil compound and polypropylene fiber. The mass loss ratio is decreased with increasing the content of natural coarse aggregate and soil compound, but it is increased with increasing the content of polypropylene fiber. The ultrasonic pulse velocity, dynamic modulus of elasticity and durability factor are increased with increasing the content of natural coarse aggregate and soil compound, but it is decreased with increasing the content of polypropylene fiber. The mass loss ratio, ultrasonic pulse velocity, dynamic modulus of elasticity and durability factor are $1.49{\sim}3.32%,\;1,870{\sim}2,465\;m/s,\;77X10^2{\sim}225X10^2\;MPa\;and\;84.6{\sim}92.8$ after freezing and thawing 300 cycles, respectively. These eco-concrete can be used for environment-friendly side walk and farm road.