• Title/Summary/Keyword: dynamic system

Search Result 14,369, Processing Time 0.045 seconds

Evaluation of availability of nuclear power plant dynamic systems using extended dynamic reliability graph with general gates (DRGGG)

  • Lee, Eun Chan;Shin, Seung Ki;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.444-452
    • /
    • 2019
  • To assess the availability of a nuclear power plant's dynamic systems, it is necessary to consider the impact of dynamic interactions, such as components, software, and operating processes. However, there is currently no simple, easy-to-use tool for assessing the availability of these dynamic systems. The existing method, such as Markov chains, derives an accurate solution but has difficulty in modeling the system. When using conventional fault trees, the reliability of a system with dynamic characteristics cannot be evaluated accurately because the fault trees consider reliability of a specific operating configuration of the system. The dynamic reliability graph with general gates (DRGGG) allows an intuitive modeling similar to the actual system configuration, which can reduce the human errors that can occur during modeling of the target system. However, because the current DRGGG is able to evaluate the dynamic system in terms of only reliability without repair, a new evaluation method that can calculate the availability of the dynamic system with repair is proposed through this study. The proposed method extends the DRGGG by adding the repair condition to the dynamic gates. As a result of comparing the proposed method with Markov chains regarding a simple verification model, it is confirmed that the quantified value converges to the solution.

A Study on the Dynamic Analysis of Railway Vehicle by Using Track Coordinate System (트랙좌표계를 이용한 철도차량의 동역학 해석에 관한 연구)

  • Kang, Juseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.122-130
    • /
    • 2013
  • Rail geometries such as cant, grade and curvature can be easily represented by means of a track coordinate system. In this analysis, in order to derive a dynamic and constraint equation of a wheelset, the track coordinate system is used as an intermediate stage. Dynamic and constraint equations of railway vehicle bodies except the wheelset are written in the Cartesian coordinate system as a conventional method. Therefore, whole dynamic equations of a railway vehicle are derived by combining wheelset dynamic equations and dynamic equations of railway vehicle bodies. Constraint equations and constraint Jacobians are newly derived for the track coordinate system. A process for numerical analysis is suggested for the derived dynamic and constraint equations of a railway vehicle. The proposed dynamic analysis of a railway vehicle is validated by comparison against results obtained from VI-RAIL analysis.

Dynamic Models and Simulation of the Absorption Air Conditioning System (흡수식 공조 시스템의 동적 모델과 시뮬레이션)

  • 한도영;이승기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.994-1003
    • /
    • 2000
  • Control algorithms for the absorption air conditioning system may be developed by suing dynamic models of the system. The simplified effective dynamic models, which can predict the dynamic behaviors of the system, may help the development of effective control algorithms for the system. In this study, a dynamic simulation program for the absorption air conditioning system was developed. Dynamic models for an absorption chiller, a cooling tower, an air handling unit, a boiler, a three way valve, a controller, and a duct were developed and programed. Control algorithms for the absorption chiller, the cooling tower, and the air handling unit were selected, and analyzed to show the effectiveness of dynamic models. From the simulation results, it may be concluded that this simulation program may be effectively used for the development of optimal control algorithms of the absorption air conditioning system.

  • PDF

A Study on the Dynamic Programming for Control (제어를 위한 동적 프로그래밍에 관한 연구)

  • Cho, Hyang-Duck;Kim, Woo-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.556-559
    • /
    • 2007
  • The notion of linearity is fundamental in science and engineering. Much of system and control theory is based on the analysis of linear system, which does not care whether it is nonlinear and complex. The dynamic programming is one of concerned technology when users are interested in choosing best choice from system operation for nonlinear or dynamic system‘s performance and control problem. In this paper, we will introduce the dynamic programming which is based on discrete system. When the discrete system is constructed with discrete state, transfer between states, and the event to induct transfer, the discrete system can describe the system operation as dynamic situation or symbolically at the logical point of view. We will introduce technologies which are related with controllable of Controlled Markov Chain as shown example of simple game. The dynamic programming will be able to apply to optimal control part which has adaptable performance in the discrete system.

  • PDF

A study on the Adaptive Controller with Chaotic Dynamic Neural Networks

  • Kim, Sang-Hee;Ahn, Hee-Wook;Wang, Hua O.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2007
  • This paper presents an adaptive controller using chaotic dynamic neural networks(CDNN) for nonlinear dynamic system. A new dynamic backpropagation learning method of the proposed chaotic dynamic neural networks is developed for efficient learning, and this learning method includes the convergence for improving the stability of chaotic neural networks. The proposed CDNN is applied to the system identification of chaotic system and the adaptive controller. The simulation results show good performances in the identification of Lorenz equation and the adaptive control of nonlinear system, since the CDNN has the fast learning characteristics and the robust adaptability to nonlinear dynamic system.

A Study on Seismic Performance Improvement of Nuclear Piping System through Dynamic Absorber (동흡진기를 사용한 원전 배관계 내진성능 상향에 대한 연구)

  • Kwag, Shinyoung;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • In this study, the dynamic absorber and the damper are applied to improve the seismic performance of the piping system, and their quantitative effects on the piping system performance are examined. For this purpose, the response performances of piping system applied with the dynamic absorber/damper are compared with those of the original piping system. Firstly, the frequency response analyses of the piping system with the presence or the absence of dynamic absorber/damper are performed and these results are compared. It has been shown that the maximum acceleration response per the frequency of the piping system is considerably reduced by installing the dynamic absorber and the damper. Secondly, the seismic responses of the piping systems with and without dynamic absorber/damper are compared. As a result of the numerical analyses, it is confirmed that key responses are reduced by 17%-63% due to the installation of the dynamic absorber and damper. Finally, as a result of the seismic performance evaluation, it is confirmed that the HCLPF (High Confidence of Low Probability of Failure) seismic performances are increased by 1.22 to 2.70 times with respect to the failure modes with an aid of the dynamic absorber and damper.

Simulation Analysis on Flexible Multibody Dynamics of Drum Brake System of a Vehicle

  • Liu, Yi;Hu, Wen-Zhuan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.125-130
    • /
    • 2015
  • Using flexible multibody system dynamic method, the rigid-flexible coupling multibody dynamic analysis model of the drum brake system was developed, and the kinematic and dynamic simulation of the system was processed as its object of study. Simulations show that the friction will increase with the dynamic friction coefficient, but high dynamic friction coefficient will cause the abnormal vibration and worsen the stability of the brake system, even the stability of the whole automobile. The modeling of flexible multi-body can effectively analyze and solve complex three-dimensional dynamic subjects of brake system and evaluate brake capability. Further research and study on this basis will result in a convenient and effective solution that can be much helpful to study, design and development of the brake system.

Effective Dynamic Models of a Cooling System for the Main Transformer in a Tilting Train (틸팅열차 주변압기 냉각시스템의 동적모델)

  • Han, Do-Young;Noh, Hee-Jeon;Won, Jae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.22-29
    • /
    • 2008
  • In order to improve the efficiency of a main transformer in a tilting train, the optimal operation of a cooling system is necessary. For the development of optimal control algorithms of a cooling system, mathematical models of a main transformer cooling system were developed. These include dynamic models of a main transformer, an oil pump, an oil cooler, a blower, and a pipe. Control algorithms for a blower and an oil pump were selected in order to identify the effectiveness of dynamic models. A simulation program was developed by using the developed dynamic models and the selected control algorithms. Simulation results showed good predictions of dynamic behaviors of a main transformer cooling system. Therefore, dynamic models, which were developed in this study, may be effectively used to develop control algorithms of a main transformer cooling system.

  • PDF

A Study about Modeling and Control of Dynamic Absorber for Vehicle by Using Active Viscous Damping (능동적 점성감쇠를 이용한 차량용 동적 흡진기의 모델링과 제어에 관한 연구)

  • 김대원;배준영
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.121-130
    • /
    • 1999
  • Generally, A Dynamic Absorber by using Active viscous Damping is highlighted for effective suspension system, such as improved ride comfort and handling in the market. Lately, this system based on the Sky-Hook damper theory is introduced by the name of "Active Dynamic Absorber" to us. This system has an excellent performance in contrast to Passive. Adaptive Dynamic Absorber, besides having low cost components of system, low energy consumption. light weight of system. In this viewpoint. most of car-maker will adopt this system in the near future. For this reason, we developed Dynamic Absorber by using Active viscous Damping which is equipped with continuously variable Dynamic Absorber and Control logic consisting Filter and Estimator. control apparatus of Dynamic Absorber operated by 16-bit microprocessor of high performance. variable device of viscous Damping. G-sensor so on. In this paper. several important points of development procedure for realizing this system will be described with results in which is obtained from experiment by simulation and Full car test in Proving ground. respectively.pectively.

  • PDF

A Study on Optimal Multi-dynamic Absorber of Damped Linear Vibration System under the Harmonic Motion of the Base (기반의 조화운동을 받는 감쇠선형진동계의 최적 복합동흡진기에 관한 연구)

  • 안찬우;김동영;홍도관
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.325-330
    • /
    • 2000
  • A dynamic absorber is used to protect the primary vibration system under the steady-state harmonic disturbance. In a number of cases it appears expedient to install several absorbers of smaller masses instead of one. This may be due to the need of distribute the absorber's response along the construction, restrictions on the absorber's installation. So, we studied characteristics of the primary vibration system for the optimal natural frequency ratio and the optimal damping ratio of serial multi-dynamic absorber. Also we obtained the optimum values of the serial multi-dynamic absorber parameters using computer simulation for the damped primary vibration system. In designing multi-dynamic absorber, we presented for the optimal natural frequency and the optimal damping ratio of multi-dynamic absorbers.

  • PDF