• Title/Summary/Keyword: dynamical behavior

Search Result 130, Processing Time 0.025 seconds

Computations of the Lyapunov exponents from time series

  • Kim, Dong-Seok;Park, Eun-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.595-604
    • /
    • 2012
  • In this article, we consider chaotic behavior happened in nonsmooth dynamical systems. To quantify such a behavior, a computation of Lyapunov exponents for chaotic orbits of a given nonsmooth dynamical system is focused. The Lyapunov exponent is a very important concept in chaotic theory, because this quantity measures the sensitive dependence on initial conditions in dynamical systems. Therefore, Lyapunov exponents can decide whether an orbit is chaos or not. To measure the sensitive dependence on initial conditions for nonsmooth dynamical systems, the calculation of Lyapunov exponent plays a key role, but in a theoretical point of view or based on the definition of Lyapunov exponents, Lyapunov exponents of nonsmooth orbit could not be calculated easily, because the Jacobian derivative at some point in the orbit may not exists. We use an algorithmic calculation method for computing Lyapunov exponents using time series for a two dimensional piecewise smooth dynamic system.

TRANSFORMATION OF LOCAL BIFURCATIONS UNDER COLLOCATION METHODS

  • Foster, Andrew;Khumalo, Melusi
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1101-1123
    • /
    • 2011
  • Numerical schemes are routinely used to predict the behavior of continuous dynamical systems. All such schemes transform flows into maps, which can possess dynamical behavior deviating from their continuous counterparts. Here the common bifurcations of scalar dynamical systems are transformed under a class of algorithms known as linearized one-point collocation methods. Through the use of normal forms, we prove that each such bifurcation in an originating flow gives rise to an exactly corresponding one in its discretization. The conditions for spurious period doubling behavior under this class of algorithm are derived. We discuss the global behavioral consequences of a singular set induced by the discretizing methods, including loss of monotonicity of solutions, intermittency, and distortion of attractor basins.

OPENNESS OF ANOSOV FAMILIES

  • Acevedo, Jeovanny de Jesus Muentes
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.575-591
    • /
    • 2018
  • Anosov families were introduced by A. Fisher and P. Arnoux motivated by generalizing the notion of Anosov diffeomorphism defined on a compact Riemannian manifold. Roughly, an Anosov family is a two-sided sequence of diffeomorphisms (or non-stationary dynamical system) with similar behavior to an Anosov diffeomorphisms. We show that the set consisting of Anosov families is an open subset of the set consisting of two-sided sequences of diffeomorphisms, which is equipped with the strong topology (or Whitney topology).

An analytical solution for equations and the dynamical behavior of the orthotropic elastic material

  • Ramady, Ahmed;Atia, H.A.;Mahmoud, S.R.
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.315-321
    • /
    • 2021
  • In this article, an analytical solution of the dynamical behavior in an orthotropic non-homogeneity elastic material using for elastodynamics equations is investigated. The effects of the magnetic field, the initial stress, and the non-homogeneity on the radial displacement and the corresponding stresses in an orthotropic material are investigated. The analytical solution for the elastodynamic equations has solved regarding displacements. The variation of the stresses, the displacement, and the perturbation magnetic field have shown graphically. Comparisons are made with the previous results in the absence of the magnetic field, the initial stress, and the non-homogeneity. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity.

Dynamical behavior of the orthotropic elastic material using an analytical solution

  • Balubaid, Mohammed;Abdo, H.;Ghandourah, E.;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.331-339
    • /
    • 2021
  • In this work, an analytical solution is provided for the dynamical response of an orthotropic non-homogeneous elastic material. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity. The analytical performances for the elastodynamic equations has been solved regarding displacements. The influences of the rotation, the magnetic field, the non-homogeneity based radial displacement and the corresponding stresses in an orthotropic material are investigated. The variations of the stresses, the displacement, and the perturbation magnetic field have been illustrated. The comparisons is performed using the previous solutions in the magnetic field absence, the non-homogeneity and the rotation.

Dynamical Rolling Analysis of a Vessel in Regular Beam Seas

  • Lee, Sang-Do;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.325-331
    • /
    • 2018
  • This paper deals with the dynamical analysis of a vessel that leads to capsize in regular beam seas. The complete investigation of nonlinear behaviors includes sub-harmonic motion, bifurcation, and chaos under variations of control parameters. The vessel rolling motions can exhibit various undesirable nonlinear phenomena. We have employed a linear-plus-cubic type damping term (LPCD) in a nonlinear rolling equation. Using the fourth order Runge-Kutta algorithm with the phase portraits, various dynamical behaviors (limit cycles, bifurcations, and chaos) are presented in beam seas. On increasing the value of control parameter ${\Omega}$, chaotic behavior interspersed with intermittent periodic windows are clearly observed in the numerical simulations. The chaotic region is widely spread according to system parameter ${\Omega}$ in the range of 0.1 to 0.9. When the value of the control parameter is increased beyond the chaotic region, periodic solutions are dominant in the range of frequency ratio ${\Omega}=1.01{\sim}1.6$. In addition, one more important feature is that different types of stable harmonic motions such as periodicity of 2T, 3T, 4T and 5T exist in the range of ${\Omega}=0.34{\sim}0.83$.

Dynamical Behavior of Autoassociative Memory Performaing Novelty Filtering

  • Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4E
    • /
    • pp.3-10
    • /
    • 1998
  • This paper concerns the dynamical behavior, in probabilistic sense, of a feedforward neural network performing auto association for novelty. Networks of retinotopic topology having a one-to-one correspondence between and output units can be readily trained using back-propagation algorithm, to perform autoassociative mappings. A novelty filter is obtained by subtracting the network output from the input vector. Then the presentation of a "familiar" pattern tends to evoke a null response ; but any anomalous component is enhanced. Such a behavior exhibits a promising feature for enhancement of weak signals in additive noise. As an analysis of the novelty filtering, this paper shows that the probability density function of the weigh converges to Gaussian when the input time series is statistically characterized by nonsymmetrical probability density functions. After output units are locally linearized, the recursive relation for updating the weight of the neural network is converted into a first-order random differential equation. Based on this equation it is shown that the probability density function of the weight satisfies the Fokker-Planck equation. By solving the Fokker-Planck equation, it is found that the weight is Gaussian distributed with time dependent mean and variance.

  • PDF

Single-mode optical fiber strain gauge (단일 모-드 광섬유 스트레인 게이지)

  • 이기완;김병교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1198-1203
    • /
    • 1991
  • A single w& optical fiber strain gauge subjected to the excited PZT-plate is presented which was obtained using a Mach-Zehnder interferometer. This paper has been performed the considerations to the experimental situation In which the dynamical behavior of a optical fiber strain gauge is illustrated. A comparison is reported between the dynamic response of a optical fiber strain gauge and the semiconductor strain gauge in the frequency range 5-50Hz. This result is shown in very good usage as the dynamical measurement of the low strain below l.mu..epsilon. by this system.

  • PDF

DYNAMICAL BIFURCATION OF THE ONE-DIMENSIONAL CONVECTIVE CAHN-HILLIARD EQUATION

  • Choi, Yuncherl
    • Korean Journal of Mathematics
    • /
    • v.22 no.4
    • /
    • pp.621-632
    • /
    • 2014
  • In this paper, we study the dynamical behavior of the one-dimensional convective Cahn-Hilliard equation(CCHE) on a periodic cell [$-{\pi},{\pi}$]. We prove that as the control parameter passes through the critical number, the CCHE bifurcates from the trivial solution to an attractor. We describe the bifurcated attractor in detail which gives the final patterns of solutions near the trivial solution.

EXTENDING THE APPLICATION OF THE SHADOWING LEMMA FOR OPERATORS WITH CHAOTIC BEHAVIOUR

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.27 no.5
    • /
    • pp.521-525
    • /
    • 2011
  • We use a weaker version of the celebrated Newton-Kantorovich theorem [3] reported by us in [1] to find solutions of discrete dynamical systems involving operators with chaotic behavior. Our results are obtained by extending the application of the shadowing lemma [4], and are given under the same computational cost as before [4]-[6].