• Title/Summary/Keyword: e-PTFE membrane

Search Result 60, Processing Time 0.025 seconds

A Comparative Study of Clinical Healing Aspects in GTR Treatment on Class II Furcation Defects (치근이개부 II급 병변에서 조직유도재생술의 임상적 치유양상의 비교)

  • Moon, Sun-Young;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.519-540
    • /
    • 1999
  • The purpose of this study is to compare the healing aspects of the use of ePTFE membrane alone versus combination treatment of ePTFE membrane and bone grafts on class II furcation defects. Seventeen defects were applied ePTFE membrane alone on mxillary molar buccal class II furcation defects as Group I, seventeen defects were applied ePTFE membrane and bone grafts on maxillary molar buccal class II furcation defects as Group II, twenty-three defects were applied ePTFE membrane alone on mandibular molar buccal class II furcation defects as Group III, twenty defects were applied ePTFE membrane and bone grafts on mandibular molar buccal class II furcation defects as Group IV . Measurements were made to determine clinical attachment level, probing depth, gingival depth, SBI, mobility at baseline, 3, 6, 12 months postoperatively. Additional measurements were made to determine membrane exposure level at surgery, 1, 2, 6 weeks postoperatively. And then healing patterns and postoperative complications were evaluated. The result as follows : There were statistically significant differences in probing depth reduction, clinical attachment gain, mobility reduction at values of 3, 6, 12 months postoperatively compared to values of baseline(p<0.05), whereas no significant differences in SBI and gingival recession. In group II, membrane exposure level was increased at 1, 2, 6 weeks postoperatively compared to value of baseline(p<0.05). There were statistically significant differences in changes of probing depth at 3, 6, 12 months postoperatively in combination groups of ePTFE membrane and bone graft compared to groups of ePTFE membrane alone(p<0.05). The vast majority of cases fall into typical healing and delayed healing response when membranes were removed in all groups. Pain and swelling were common postoperative complications. In conclusion, this study was showed more effective healing aspects in combination treatment of ePTFE membrane and bone graft than ePTFE membrane alone and on mandibular molar class II furcation defects than maxillary molar.

  • PDF

The Effect of e-PTFE Membrane Exposure on the Initial Healing of Periodontal Tissue in GTR Procedure (e-PTFE 차단막을 이용한 조직유도재생술시 e-PTFE 차단막의 노출이 치주조직의 초기치유에 미치는 영향)

  • Moon, Ik-Sang;Kim, Ji-Eun;Song, Kun-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.553-560
    • /
    • 1999
  • The aim of the present study was to evaluate the effect of the expanded polytetrafluoroethylene (e-PTFE) membrane exposure on the initial healing of the periodontal tissue in guided tissue regeneration (GTR) procedure. 90 sites selected from 90 patients were treated with gingival flap surgery supported by an e-PTFE membrane. The material included angular bony defects with probing attachment loss of > 5mm or degree II furcation involvement. Treated sites were classified with membrane exposure group and non-exposure group at membrane removal and evaluated healing type. The results were obtained as follows. 1. e-PTFE membrane was exposed at 61 sites (67.8%) among 90 sites. 2. Thirteen sites (14.4%) depicted rapid healing type, 65 sites (72.2%) depicted typical healing type, 9 sites (10%) showed delayed healing type and 3 sites (3.3%) were categorized as adversed healing type. 3. In e-PTFE membrane exposure group, 1 site (1.6%), 51 sites (83.6%), 6 sites (9.8%) and 3 sites (4.9%) showed rapid healing type, typical healing type, delayed healing type and adverse healing type respectively. 4. In e-PTFE membrane non-exposure group, 12 sites (41.3%), 14 sites (48.3%) and 3 sites (10.3%) showed rapid healing type, typical healing type and delayed healing type respectively. Adverse healing type was not observed. 5. The rate of favourable healing between e-PTFE membrane exposure group and non-exposure group was not statistically significant(p=0.56). These results suggest that the prevention of membrane exposure may be important to obtain rapid healing type. However favourable healing could be obtained with stringent infection control program even if membrane was exposed.

  • PDF

Osteopromotive effect of Titanium Reinforced-ePTFE membrane (티타늄강화 차폐막의 골유도 재생 효과)

  • Lee, Jean;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.4
    • /
    • pp.711-722
    • /
    • 2004
  • The purpose of this study is to evaluate the regenerated bone histollogically using titanium reinforced ePTFE(TR-ePTFE) membrane and to investigate cell occlusiveness, wound stabilization and tissue integration of TR-ePTFE membrane. Adult male rabbits (mean BW 2kg) and TR9W (W.L.Gore&Associate.INC,USA) were used in this study. Intramarrow penetration defects were surgically created with round carbide bur(HP long #6) on calvaria of rabbits. TR-ePTFE membrane was applied to defect. Then guided bone regeneration was carried out using TR-ePTFE membrane and resorbable suture. At 2,4,8,12 weeks after the surgery, animals were sacrificed. Nondecalcified specimens were processed for histologic analysis. The result and conclusion of this study were as follows: 1. TR-ePTFE membrane had good ability of biocompatibility and cell occlusiveness. 2. space making for guided bone regenerayion was good at TR-ePTFE membrane. 3. Tissue integration was not good at TR-ePTFE membrane. So, wound stabilization was not good. 4. At 8 weeks, 12 weeks after GBR procedure, bone formation was seen. From the above results, TR-ePTFE membrane fixed tightiy on alveolar bone might be recommended for the early bone formation.

The Comparative Study On Scanning Electron Microscopic Findings Of Retrived ePTFE Membrane With Clinical Conditions (제거된 ePTFE 막의 주사전자현미경적 소견과 치주임상상태의 비교연구)

  • Park, Jeong-Min;Choi, Byung-Son;Lee, Seok-Cho;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.133-142
    • /
    • 1996
  • Ten intrabony defects in 10 patients were treated by flap surgery including root surface debridement and placement of an expanded polytetrafluoroethylene(ePTFE) membrane. The membranes were removed after 4-6 weeks. This study was performed to examine the retrived ePTFE membrane by scanning electron microscopy(SEM) for bacterial contamination and adherent connective tissue elements, and to compare it with clinical conditions. The cervical portion of the membrane, which in most cases had become partially exposed to the oral cavity, had a bacterial deposit. Small bacterial colonies and a scatter of single cells in some instances extended into the apical portion of the membrane. Fibroblast-like cells, erythrocytes and fibrous structures were seen in the apical portion of the membrane. Outer surface of membrane tends to more bacterial contamination than inner surface(p<0.01), and upper portions more than lower portions(P<0.01). Comparison of ultrastructural findings and clinical conditions revealed that extent of bacterial contamination of the membrane correlated with gingival inflammation and extent of membrane exposure, but it was not significant statistically. The results suggested that gingival inflammation and membrane exposure affect periodontal regeneration by the use of ePTFE membrane.

  • PDF

Effect Of Bioceramic Grafts With And Without eptfe Membrane In Periodontal Osseous Defects In Dogs (생체요업재료와 차폐막의 복합사용후 골연하 결손부의 재생효과)

  • Lee, In-Kyung;Lee, Ki-Young;Han, Soo-Boo;Ko, Jae-Sung;Cho, Jeong-Sik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.47-67
    • /
    • 1996
  • The purpose of this study was to observe the effect of $Biocoral^R$ graft and bioglass 45S5 graft in combination with ePTFE membrane in periodontal osseous defects for new bone formation. Nine healthy dogs were used. Under general anesthesia, 3-wall defects were created on the mesial and distal surfaces of the maxillary right canines, the mesials of the maxillary right second premolars, the distals of the mandibular right canines and the mesials of the mandibular right third premolars. To induce periodontitis, a silicone rubber, $Provil^R$ light body, was injected under pressure into the defects. Ninety days later, $Provil^R$was removed and followed by thorough root planing. The followings were then applied in the mesial and distal defects of the maxillary right canines, the mesials of the maxillary right second premolars, the distals of the mandibular right canines and the mesials of the mandibular right third premolars by random selections : 1) ePTFE membrane only application, 2) $Biocoral^R$ graft, 3) $Biocoral^R$ graft and ePTFE membrane application, 4)Bioglass 45S5 graft, 5) Bioglass 45S5 graft and ePTFE membrane application. The membranes were removed 1 month later. The dogs were sacrified at 1, 2 and 3 months following the graft, and block sections were made, demineralized, embedded, stained and examined by light microscope and transmission electron microscope. On the sections from teeth treated with ePTFE membrane only, the defect demonstrated extensive connnective tissue and alveolar bone regeneration. The $Biocoral^R$ graft group demonstrated extensive bone regeneration compared with ePTFE membrane only group. In the $Biocoral^R$ graft plus ePTFE membrane group, regeneration of new alveolus and crest occurred within the defect. As the experimental period lengthened, bone regeneration was increased and bone bridge was formed among the graft particles. The but bioglass 45S5 graft group demonstrated extensive bone regeneration but the amount of new bone was less than that of the $Biocoral^R$ graft group. For the bioglass 45S5 graft plus ePTFE membrane group, the amount of new bone was also increased. As the experimental period lengthened, bone regeneration was increased. Multinucleated giant cells, fibroblasts and macrophages were observed. As the bone formation was increased, the number of such cells was decreased. In conclusion, the $Biocoral^R$ was found better than the bioglass 45S5 for new bone formation, and the use of ePTFE membrane alone or with $Biocoral^R$/bioglass 45S5 can be supported as potential methods of promoting bone formation.

  • PDF

Effect of inorganic polyphosphate on guided bone regeneration (무기인산염이 골유도재생에 미치는 영향)

  • Chung, Jong-Hyuk;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.491-510
    • /
    • 2005
  • This study was performed to evaluate the effect of inorganic polyphosphate on bone formation in the calvaria of rabbit in the procedure of guided bone regeneration with bovine cancellous bone graft and titanium reinforced expanded polytetrafluoroethylene(TR-ePTFE) membrane. The rabbits were divided into four groups. Control group I used only TR-ePTFE membrane, control group II used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in saline, experimental group III and IV used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in 1% or 2% inorganic polyphosphate respectively. After decortication in the calvaria, GBR procedure was performed on 12 rabbits with titanium reinforced ePTFE membrane filled with deproteinized bovine bone mineral soaked in saline or inorganic polyphosphate. The animals were sacrificed at 2 weeks, 4 weeks, and 8 weeks after the surgery. Decalcified and non-decalcified specimens were processed for histologic and immunohistochemistric analysis. 1. Titanium reinforced ePTFE(TR-ePTFE) membrane showed good spacemaking and cell occlusiveness capability, but it showed poor wound stabilization. 2. The deproteinized bovine bone mineral did not promote bone regeneration, but it acted as a space filler. 3. There was no complete resorption of the deproteinized bovine bone mineral within 8 weeks. 4. 1% inorganic polyphosphate did not promote bone formation, but 2% inorganic polyphosphate promoted bone formation. Within the above results, 2% inorganic polyphosphate could be used effectively for bone regeneration.

Effect of MBCP block as carrier of rhBMP-2 in combination with ePTFE membrane on bone formation in rat calvarial defects

  • Shin, Chul-Woo;Cho, Kyoo-Sung;Jung, Sung-Won;Kim, Chang-Sung;Choi, Seong-Ho;Yun, Jeong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.325-334
    • /
    • 2008
  • Purpose: The carrier used as delivery agent for bone morphogenetic proteins(BMPs) should also act as a scaffold for new bone formation. Moreover, bone formation should be predictable in terms of the volume and shape. This study examined the osteogenic effect of macroporous biphasic calcium phosphate (MBCP) block combined with ePTFE membrane as a carrier for recombinant human bone morphogenetic proteins (rhBMP-2). In addition, the additive effect of ePTFE membrane on bone formation was evaluated. Materials and Methods: Eight-millimeter critical sized calvarial defects were created surgically in 28 male Sprague-Dawley rats. The animals were divided into 2 groups containing 14 animals each. The defects were treated with either rhBMP-2/MBCP block (rhBMP-2/MBCP group) or rhBMP-2/MBCP block/ePTFE membrane (rhBMP-2/MBCP/ePTFE group). A disc-shaped MBCP block (3 mm height and 8 mm diameter) was used as the carrier for the rhBMP-2 and ePTFE membrane was used to cover the rhBMP-2/MBCP block. The histologic and histometric parameters were used to evaluate the defects after 2- or 8-week healing period (7 animals/group/healing interval). Results: The level of bone formation in the defects of both groups was significantly higher at 8 weeks than that at 2 weeks (P < 0.05). The ePTFE membrane has no additional effect compared with the rhBMP-2/MBCP block only. However, at 8 weeks, rhBMP-2/MBCP/ePTFE group showed more even bone formation on the top of the MBCP block than the rhBMP-2/MBCP group. Conclusion: These results suggest that the ePTFE membrane has no additive effect on bone formation when a MBCP block is used as a carrier for rhBMP-2.

Chemical Degradation of e-PTFE Support Used in PEMFC after Fenton Reaction (고분자연료전지에 사용되는 e-PTFE 지지체의 펜톤반응 후 화학적 열화)

  • Oh, Sohyeong;Lim, Daehyun;Lee, Mooseok;Lee, Donghoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.536-540
    • /
    • 2020
  • The support of the PEMFC membrane plays a key role in improving mechanical durability. The e-PTFE used as a support is chemically stable, so electro-chemical degradation in the PEMFC driving process has been rarely studied. In this study, we investigated whether e-PTFE is chemically stable to radicals and hydrogen peroxide during Fenton reaction. After the Fenton reaction, the main chain of e-PTFE broke, resulting in a change in the chemical structure and morphology of the support, resulting in a decrease in tensile strength. The results of this study showed that electrochemical degradation of the membrane ionomer in the PEMFC process occurs inside the membrane by radicals and hydrogen peroxide, so that electrochemical degradation may also occur at the e-PTFE support in the cell.

Enhancing Adhesion between Polyphenylene Sulfide Fabric and Polytetrafluoroethylene Film for Thermally Stable Air Filtration Membrane (열안정 공기 여과막용 폴리페닐렌 설파이드 원단과 폴리테트라플루오로에틸렌 필름 사이의 접착력 향상)

  • Jin Uk Kim;Hye Jeong Son;Sang Hoon Kang;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.201-210
    • /
    • 2023
  • Dust filter membranes play a crucial role in human life and various industries, as they contribute to several important aspects of human health, safety, and environmental protection. This study presents the development of a polysulfone@polyphenylene sulfide/polytetrafluoroethylene (PSf@PPS/ePTFE) composite dust filter membrane with excellent thermal stability and adhesion properties for high-temperature conditions. FT-IR analysis confirms successful impregnation of PSf adhesive onto PPS fabric and interaction with ePTFE support. FE-SEM images reveal improved fiber interconnection and adhesion with increased PSf concentration. PSf@PPS/ePTFE-5 exhibits the most suitable porous structure. The composite membrane demonstrates exceptional thermal stability up to 400℃. Peel resistance tests show sufficient adhesion for dust filtration, ensuring reliable performance under tough, high-temperature conditions without compromising air permeability. This membrane offers promising potential for industrial applications. Further optimizations and applications can be explored.

Bacterial Adhesion And Penetration To e-PTFE Membrane Used For The Guided Tissue Regeneration (치주조직재생유도술용 비흡수성 차폐막 (e-PTFE membrane)에의 세균부착 및 침투)

  • Chung, Hyun-Ju;Lee, Sung-Mi;Lee, Ho-Jae;Kim, Ok-Soo
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.103-116
    • /
    • 1996
  • This study was performed to observe the bacterial adhesion and penetration to e-PTFE membrane following guided tissue regeneration(GTR) procedure and to evaluate the association of the membrane exposure and bacterial contamination with the clinical outcome. For the study, ten infrabony defects in 9 patient were treated by mucoperiosteal flap operation including placement of the e-PTFE membrane. The treated teeth were monitored weekly for the membrane exposure, gingival recession and gingival inflammation. The membranes were retrieved after 4 to 6 weeks, examined by SEM for bacterial contamination and adherent connective tisue elements, and observed under LM for the bacterial penetration into membrane. Three months postsurgery, the defect sites were clinically reexamined for the changes in attachment level and probing depth. Comparison of the ultrastuctural findings and clinical outcome revealed that extent of membrane exposure and bacterial contamination of the membrane was inversely associated with clinical attachment gain. From this finding, the extent of membrane exposure and the bacterial contamination on the apical portion of the e-PTFE membrane at the time of removal seemed to be a critical determinant on the clinical outcome of GTR and the membrane exposure needs to be controlled for optimal results.

  • PDF