• Title/Summary/Keyword: earthquake excitation

Search Result 377, Processing Time 0.035 seconds

Seismic Response Control Performance of Linear and Nonlinear TLD Models (선형 및 비선형 TLD의 지진응답 제어성능 평가)

  • Lee, Sang-Hyun;Woo, Sung-Sik;Chung, Lan
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.519-526
    • /
    • 2006
  • This paper compares the seismic response control performance of linear and non-linear models fer tuned liquid damper (TLD). The existing linear and nonlinear TLD models were used for the numerical analysis of single degree of freedom (SDOF) and multi degree of freedom (MDOF) systems with TLD. The nonlinear model considers the variation of the frequency and damping of the TLD with varying excitation amplitude while the linear one has the invariant parameters. Numerical analysis results from SDOF systems indicate that the nonlinear model shows about 5% better control performance than linear one when the mass ratio is 2% and the optimal parameters for reducing peak responses are dependent on the characteristics of the excitation earthquake loads.

  • PDF

Structural Vibration Characteristics of a MW-Class Wind Turbine Tower Considering Earthquake Base Excitation (지진기반 가진효과를 고려한MW 급 풍력발전기 타워의 구조진동 특성연구)

  • Kim, Dong-Man;Park, Kang-Kyun;Kim, Dong-Hyun;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.616-620
    • /
    • 2009
  • Modern wind turbines have been mainly erected in region where earthquake are rare or normally weak, especially Korea was thought as safety zone from earthquake. But recently, the earthquake occurs more and more frequently. So, the wind turbine design is required the structural and functional stability under the earthquake. The earthquake can influence normal operation, even if a weak earthquake. There are two ways to review the design under earthquake using Computer Applied Engineering (CAE). One is the Response Spectrum Analysis (RSA) the other is Time History Analysis (THA). In this research, dynamic response on time is obtained under the earthquake by taking into account ground accelerogram consistent with the relevant standards applied to the turbine foundation.

  • PDF

Damage detection of nonlinear structures with analytical mode decomposition and Hilbert transform

  • Wang, Zuo-Cai;Geng, Dong;Ren, Wei-Xin;Chen, Gen-Da;Zhang, Guang-Feng
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • This paper proposes an analytical mode decomposition (AMD) and Hilbert transform method for structural nonlinearity quantification and damage detection under earthquake loads. The measured structural response is first decomposed into several intrinsic mode functions (IMF) using the proposed AMD method. Each IMF is an amplitude modulated-frequency modulated signal with narrow frequency bandwidth. Then, the instantaneous frequencies of the decomposed IMF can be defined with Hilbert transform. However, for a nonlinear structure, the defined instantaneous frequencies from the decomposed IMF are not equal to the instantaneous frequencies of the structure itself. The theoretical derivation in this paper indicates that the instantaneous frequency of the decomposed measured response includes a slowly-varying part which represents the instantaneous frequency of the structure and rapidly-varying part for a nonlinear structure subjected to earthquake excitations. To eliminate the rapidly-varying part effects, the instantaneous frequency is integrated over time duration. Then the degree of nonlinearity index, which represents the damage severity of structure, is defined based on the integrated instantaneous frequency in this paper. A one-story hysteretic nonlinear structure with various earthquake excitations are simulated as numerical examples and the degree of nonlinearity index is obtained. Finally, the degree of nonlinearity index is estimated from the experimental data of a seven-story building under four earthquake excitations. The index values for the building subjected to a low intensity earthquake excitation, two medium intensity earthquake excitations, and a large intensity earthquake excitation are calculated as 12.8%, 23.0%, 23.2%, and 39.5%, respectively.

Excitation and System Identification of a Full-Scale Five-Story Structure for the Application of Viscoelastic Dampers (점탄성 감쇠기 적용을 위한 실물크기 5층 건물의 가진 및 시스템 식별)

  • 민경원;이상현;김진구;이영철;이승준;최현훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • Excitation and system identification are carried out for a full-scale five-story structure to obtain fundamental data which will be used for the design of viscoelastic dampers, The hybrid mass driver(HMD) installed on the fifth floor was employed as external exciter to provide excitation for the building, Each floor response was measured and processed to find out where and how the viscoelastic dampers are located and designed. The sine-sweep and white noise loadings were applied to the structure by the HMD to obtain dynamic characteristics such as natural frequencies, damping ratios, and modes, The identified building was experimentally investigated again with the designed viscoelastic dampers installed at inter-stories to obtain the response behavior in the companion paper.

Metamodeling of nonlinear structural systems with parametric uncertainty subject to stochastic dynamic excitation

  • Spiridonakos, Minas D.;Chatzia, Eleni N.
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.915-934
    • /
    • 2015
  • Within the context of Structural Health Monitoring (SHM), it is often the case that structural systems are described by uncertainty, both with respect to their parameters and the characteristics of the input loads. For the purposes of system identification, efficient modeling procedures are of the essence for a fast and reliable computation of structural response while taking these uncertainties into account. In this work, a reduced order metamodeling framework is introduced for the challenging case of nonlinear structural systems subjected to earthquake excitation. The introduced metamodeling method is based on Nonlinear AutoRegressive models with eXogenous input (NARX), able to describe nonlinear dynamics, which are moreover characterized by random parameters utilized for the description of the uncertainty propagation. These random parameters, which include characteristics of the input excitation, are expanded onto a suitably defined finite-dimensional Polynomial Chaos (PC) basis and thus the resulting representation is fully described through a small number of deterministic coefficients of projection. The effectiveness of the proposed PC-NARX method is illustrated through its implementation on the metamodeling of a five-storey shear frame model paradigm for response in the region of plasticity, i.e., outside the commonly addressed linear elastic region. The added contribution of the introduced scheme is the ability of the proposed methodology to incorporate uncertainty into the simulation. The results demonstrate the efficiency of the proposed methodology for accurate prediction and simulation of the numerical model dynamics with a vast reduction of the required computational toll.

Efficient and accurate domain-truncation techniques for seismic soil-structure interaction

  • Guddati, Murthy;Savadatti, Siddharth
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.563-580
    • /
    • 2012
  • We modify the formulation of a recently developed absorbing boundary condition (ABC), the perfectly matched discrete layers (PMDL), to incorporate the excitation coming from the exterior such as earthquake waves. The modified formulation indicates that the effect of the exterior excitation can be incorporated into PMDL ABCs (traditionally designed to treat only interior excitation) simply by applying appropriate forces on the nodes connected to the first PMDL layer. Numerical results are presented to clearly illustrate the effectiveness of the proposed method.

Equivalent damping ratio based on earthquake characteristics of a SDOF structure with an MR damper (지진특성에 따른 MR 감쇠기가 설치된 단자유도 구조물의 등가감쇠비)

  • Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.459-464
    • /
    • 2007
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

Nonlinear Earthquake Response Analysis of a Multi-Su, pp.rted Self-anchored Suspension Bridge (다중지지된 자정식 현수교의 비선형 지진응답 해석)

  • 김호경;서정인
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.45-58
    • /
    • 1997
  • An analysis algorithm and a computer program have been developed to clarify the geometrically nonlinear response characteristics of a suspension bridge subject to the support excitation. The Finite Element procedures are utilized for the application to a self-anchored suspension bridge or to a mono-duo cable suspension bridge. The propagation of earthquake wave is simulated by taking a record as the input at the left anchorage of the bridge, and addign appropriate time delay to the other inputs for the purpose of considering the multi-support effects. According to the application for a mono-duo self-anchored suspension bridge, it has been found that the effects of nonlinear behavior and multi-support excitation are notable for this relatively short-spanned suspension bridge.

  • PDF

Equivalent damping ratio based on the earthquake response of a SDOF structure with a MR damper (MR 감쇠기가 설치된 단자유도 구조물의 지진응답에 기초한 등가감쇠비)

  • Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.879-885
    • /
    • 2006
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.