• Title/Summary/Keyword: eccentricity of axle loads

Search Result 6, Processing Time 0.027 seconds

Analysis of high-speed vehicle-bridge interactions by a simplified 3-D model

  • Song, Myung-Kwan;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.505-532
    • /
    • 2002
  • In this study, the analysis of high-speed vehicle-bridge interactions by a simplified 3-dimensional finite element model is performed. Since railroads are constructed mostly as double tracks, there exists eccentricity between the vehicle axle and the neutral axis of cross section of a railway bridge. Therefore, for the more efficient and accurate vehicle-bridge interaction analysis, the analysis model should include the eccentricity of axle loads and the effect of torsional forces acting on the bridge. The investigation into the influences of eccentricity of the vehicle axle loads and vehicle speed on vehicle-bridge interactions are carried out for two cases. In the first case, only one train moves on its track and in the other case, two trains move respectively on their tracks in the opposite direction. From the analysis results of an existing bridge, the efficiency and capability of the simplified 3-dimensional model for practical application can be also verified.

Dynamic Behavior of Railway Bridge Due to Trains Moving on Double Tracks (복선선로를 통과하는 열차에 의한 철도교량의 동적거동)

  • 최창근;송명관;양신추
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.450-457
    • /
    • 1999
  • In this study, the simplified method for 3-dimensional vehicle-bridge interaction analysis is utilized in the analysis of dynamic behavior of bridges in which the eccentricity of axle loads and the effect of the torsional forces acting on the bridge are included for the more accurate vehicle-bridge interaction analysis. Investigations mainly into the influence of vehicle speed on vehicle-bridge interactions are carried out for case that two trains move respectively on their tracks in the opposite direction.

  • PDF

A Model for Simplified 3-dimensional Analysis of High-speed Train Vehicle (TGV)-Bridge Interactions (고속철도차량(TGV)-교량 상호작용의 단순화된 3차원 해석모델)

  • 최창근;송명관;양신추
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.165-178
    • /
    • 2000
  • The simplified model for 3-dimensional analysis of vehicle-bridge interactions is presented in this study. By using the analysis model which includes the eccentricity of axle loads and the effect of the torsional forces acting on the bridge, the more accurate analysis results of the behavior of the bridge can be obtained. The equations of kinetic energy, potential energy and damping energy are expressed by degrees of freedom of the vehicle and the bridge. And then by applying Lagrange's equations of motion, the equations of motion of the vehicle and the bridge are obtained. By deriving the equations of forces acting on the bridge considering the vehicle-bridge vertical interactions and also by identifying the position of vehicle as time goes by, mass matrix, stiffness matrix, damping matrix and load vector of vehicle-bridge system are constructed in accordance with the position of vehicles. Then using Newmark's β-method(average acceleration), the equations of motion for the total vehicle bridge system are solved.

  • PDF

Evaluation of Dynamic Stability of KHSR Bridges Using Train/Track/Bridge Interaction Analysis Method (차량/궤도/교량 상호작용 해석법을 이용한 한국고속철도 교량의 동적안전성 평가)

  • 김만철;나성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1015-1021
    • /
    • 2001
  • This paper represents the results carried out to determine the dynamic response characteristics of Korea High Speed Rail(KHSR) bridges. The responses of the KHSR bridges subjected to the moving train loading are obtained through the simplified method for the 2-dimensional train/track/bridge interaction analysis in which the eccentricity of axle loads and the effect of the torsional forces acting on the bridge are included for the more accurate train/track/bridge interaction analysis. The results of the analyses are compared with the field test data to verify the performance of the 2-dimensional train/track/bridge interaction analysis method.

  • PDF

Performance Evaluation of KHSR Bridges Using 2-D Train/Track/Bridge Interaction Analysis Method (2차원 상호작용 해석법을 이용한 한국고속철도 교량의 성능평가)

  • 김만철;심성택;이희연
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.366-373
    • /
    • 2000
  • This paper represents the results carried out to determine the dynamic response characteristics of Korea High Speed Rail(KHSR) bridges. The responses of the KHSR bridges subjected to the moving train loading are obtained through the simplified method for the 2-dimensional train/track/bridge interaction analysis in which the eccentricity of axle loads and the effect of the torsional forces acting on the bridge are included for the more accurate train/track/bridge interaction analysis. The results of the analyses are compared with the field test data to verify the performance of the 2-dimensional train/track/bridge interaction analysis method.

  • PDF

Train/Track/Bridge Interaction Analysis Using 2-Dimensional Articulated High-Speed Train Model (2차원 관절형 고속열차 모델을 이용한 차량/궤도/교량 상호작용해석)

  • 김만철;양신추;이종득
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.414-421
    • /
    • 1999
  • In this paper, the simplified method for 2-dimensional train/track/bridge interaction analysis is utilized in the analysis of dynamic behavior of bridges in which the eccentricity of axle loads and the effect of the toriosnal forces acting on the bridge are included for the more accurate train/track/bridge interaction analysis. Inverstigations mainly into the influence of vehicle speed on train/track/bridge interactions are carried out for the two cases. The first case is that only train and bridge are considered in the modelling and the other case is that train, track and bridge are considered.

  • PDF