• Title/Summary/Keyword: edge stiffness

Search Result 119, Processing Time 0.028 seconds

Evaluation on the Edge Stiffening Affect of Composite Girder Bridge (합성형교의 외측강성 영향 평가)

  • Sung, Ki Tae;Park, Young Hoon;Lee, Seung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.179-186
    • /
    • 2008
  • To analyzing the validity for using the stiffness ratio in evaluating edge stiffness effect of the composite girder bridges, modification factors are analyzed with changing girder spacing. The relation between stiffness ratio, loading type, girder spacing and modification factors is analyzed. From the results of comparing modification factors analyzed from the field loading test and the established design method with the modification factor analyzed from this study, it was concluded that evaluating the edge stiffness effect using stiffness ratio is possible.

Low-Load/Low-Eccentricity Performance Improvement Designs for Hydro Power Application of Cylindrical Turbine Guide Bearings - Introduction of Pad Leading-Edge Tapers (수력 원통형 터빈 가이드 베어링의 저부하/저편심 성능향상 설계 - 패드 선단 테이퍼의 도입)

  • Lee, An Sung;Jang, Sun-Yong
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.65-70
    • /
    • 2017
  • In vertical hydro/hydraulic power turbine-generator applications, traditionally, cylindrical turbine guide bearings (TGBs) are widely used to provide turbine runner shafts with smooth rotation guides and supports. All existing cylindrical TGBs with simple plain pads have drawbacks such as having no pressure generation and film stiffness at the no-load condition and in addition, at the low-load/low-eccentricity condition, having very low film stiffness values and lacking design credibility in the stiffness values themselves. In this paper, in order to fundamentally improve the low-load/low-eccentricity performance of conventional cylindrical TGBs and thus enhance their design-application availability and usefulness, we propose to introduce a rotation-directional leading-edge taper to each partitioned pad, i.e., a pad leading-edge taper. We perform a design analysis of lubrication performance on $4-Pad{\times}4-Row$ cylindrical TGBs to verify an engineering/technical usefulness of the proposed pad leading-edge taper. Analysis results show that by introducing the leading-edge taper to each pad of the cylindrical TGB one can expect a constant high average direct stiffness with a high degree of design credibility, regardless of load value, even at the low-load/low-eccentricity condition and also control the average direct stiffness value by exploring the taper height as a design parameter. Therefore, we conclude that the proposed pad leading-edge tapers are greatly effective in more accurately predicting and controlling rotordynamic characteristics of vertical hydro-power turbine-generator rotor-bearing systems to which cylindrical TGBs are applied.

The Effects of Groove Dimensions of Pad on CMP Characteristics (패드 그루브의 치수가 CMP 연마특성에 미치는 영향)

  • Park Ki-Hyun;Kim Hyoung-Jae;Choi Jae-young;Seo Heon-deok;Jeong Hae-do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.432-438
    • /
    • 2005
  • CMP characteristics such as material removal rate and edge effect were measured and investigated in accordance with pad grooving effect, groove width, depth and pitch. GSQ (Groove Stiffness Quotient) and GFQ (Groove Flow Quotient) were proposed to estimate pad grooving characteristics. GSQ is defined as groove depth(D) divided by pad thickness(T) and GFQ is defined as groove width(W) divided by groove pitch(P). As GFQ value increased, material removal rate increased some point but gradually saturated. It seems that material removal rate is not affected by each parameter respectively but by interaction of these parameters such as groove dimensions. In addition, an increase in GFQ and GSQ causes edge effect to be improved. Because, pad stiffness decreases as GSQ and GFQ increase. In conclusion, groove influences relative pad stiffness although original mechanical properties of pad are unchanged by grooving. Also, it affects the flow of slurry that has an effect on the lubrication regime and polishing results. The change of groove dimensions has influence on pad stiffness and slurry flow, so that polishing results such as removal rate and edge effect become changed.

A Study on the Within Wafer Non-uniformity of Oxide Film in CMP (CMP 패드 강성에 따른 산화막 불균일성(WIWNU)에 관한 연구)

  • Park, Ki-Hyun;Jung, Jae-Woo;Park, Boum-Young;Seo, Heon-Deok;Lee, Hyun-Seop;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.521-526
    • /
    • 2005
  • Within wafer non-uniformity(WIWNU) improves as the stiffness of pad decrease. We designed the pad groove to study of pad stiffness on WIWNU in Chemical mechanical polishing(CMP) and measured the pad stiffness according to groove width. The groove influences effective pad stiffness although original mechanical properties of pad are unchanged by grooving. Also, it affects the flow of slurry that has an effect on the lubrication regime and polishing results. An Increase of the apparent contact area of pad by groove width results in decrease of effective pad stiffness. WIWNU and profile of removal tate improved as effective pad stiffness decreased. Because grooving the pad reduce its effective stiffness and it makes slurry distribution to be uniform. Futhermore, it ensures that pad conforms to wafer-scale flatness variability. By grooving the top pad, it is possible to reduce its stiffness and hence reduce WIWNU and edge effect.

Hemming Process Design of the Permalloy Shielding Can for the Stiffness (퍼멀로이 실딩캔의 강성증대를 위한 헤밍공정 설계)

  • 조형근;김동환;이선봉;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.628-632
    • /
    • 2000
  • In the recent day, shielding can was made of permalloy materials for automobile display instrument. The good roundness has an effect on magnetic property such as the low coercivity and the high permeability. But the products having the roundness is transformed by the heat treatment, the sending to the company and the assembly process. So for the stiffness of the edge, it is necessary for hemming process to be added in the deep drawing process. And it has the good appearance to create a smooth edge rather than a razor edge with urr. In this paper, it is controlled to get the best hemming product by the Pre-hemming angle($105^{\circ}$, $120^{\circ}$, $135^{\circ}$). And Possible process and tool design modification, which may lead to quality improvement in hemming were tested experimentally and using FEM. The commercial finite element program PAM-STAMPTM was used to simulate the pre-hemming process and hemming process, and the predictions were compared with experimental results according to the pre-hemming angle.

  • PDF

Experimental and analytical study of steel slit shear wall

  • Khatamirad, Milad;Shariatmadar, Hashem
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.741-751
    • /
    • 2017
  • A steel slit shear wall has vertical slits and when it is under lateral loads, the section between these slits has double-curvature deformation, and by forming a flexural plastic hinge at the end of the slit, it dissipates the energy on the structure. In this article, Experimental, numerical and analytical analyses are performed to study the effect of slit shape and edge stiffener on the behavior of steel slit shear wall. Seismic behavior of three models with different slit shapes and two models with different edge stiffener shapes are studied and compared. Hysteresis curves, energy dissipation, out of plane buckling, initial stiffness and strength are discussed and studied. The proposed slit shape reduces the initial stiffness, increases the strength and energy dissipation. Also, edge stiffener shape increases the initial stiffness significantly.

Relationship Between Geometrical Stiffness of Diaphragm and Resonance Frequency for Micro-speaker (마이크로스피커 진동판의 등가탄성과 공명진동수의 연관성)

  • Oh, Sei-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.640-644
    • /
    • 2010
  • Information technology devices, such as cellular phones, MP3s and so on, due to restrictions of space, require thin and small micro-speakers to generate sound. The reduction of the size of micro-speakers has resulted in the decrease of sound quality, due to such factors as frequency range and sound pressure level. In this study, the acoustical properties of oval microspeakers has been studied as a function of pattern shape on the diaphragm. The other conditions of micro-speakers, except for the pattern, was not changed. When the pattern is present on the diaphragm and the shape of pattern was a whirlwind, the resonance frequency was reduced due to the decrease of tensile strength of diaphragm. The patterns presented in the semi-minor axis of diaphragm did not effect a change of resonance frequency. However, increasing the number of patterns in the semimajor axis of diaphragm became a reason for the decrease of resonance frequency on edge side. When the depth of pattern on edge side was increased, the resonance frequency was decreased due to reduction of geometrical stiffness. If the height of edge and dome were increased, the resonance frequency and geometrical stiffness rapidly increased. After reaching the maximum values, they began to decrease with the continuous increase of height.

Design, Fabrication and Characterization of Lateral PZT actuator using Stiffness Control (강성제어 구조물을 이용한 수평구동형 박막 PZT 엑츄에이터의 설계, 제작 및 특성평가)

  • 서영호;최두선;이준형;이택민;제태진;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.756-759
    • /
    • 2004
  • We present a piezoelectric actuator using stiffness control and stroke amplification mechanism in order to make large lateral displacement. In this work, we suggest stiffness control approach that generates lateral displacement by increasing the vertical stiffness and reducing the lateral stiffness using additional structure. In addition, an additional structure of a serpentine spring amplifies the lateral displacement like leverage structure. The suggested lateral PZT actuator (bellows actuator) consists of serpentine spring and PZT/electrode layer which is located at the edge of the serpentine spring. The edge of the serpentine spring prevents the vertical motion of PZT layer, while the other edge of the serpentine spring makes stroke amplification like leverage structure. We have determined dimensions of the bellows actuator using ANSYS simulation. Length, width and thickness of PZT layer are 135$\mu$m, 20$\mu$m and 0.4$\mu$m, respectively. Dimensions of the silicon serpentine spring are thickness of 25$\mu$m, length of 300$\mu$m, and width of 5$\mu$m. The bellows actuator has been fabricated by SOI wafer with 25$\mu$m-top silicon and 1$\mu$m-buried oxide layer. The bellows actuator shows the maximum 3.93$\pm$0.2$\mu$m lateral displacement at 16V with 1Hz sinusoidal voltage input. In the frequency response test, the fabricated bellows actuator showed consistent displacement from 1Hz to 1kHz at 10V. From experimental study, we found the bellows actuator using thin film PZT and silicon serpentine spring generated mainly laterally displacement not vertical displacement at 16V, and serpentine spring played role of stroke amplification.

  • PDF

Investigating the effect of edge crack on the modal properties of composite wing using dynamic stiffness matrix

  • Torabi, Ali Reza;Shams, Shahrokh;Fatehi-Narab, Mahdi
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.543-564
    • /
    • 2021
  • In this study free vibration analysis of a cracked Goland composite wing is investigated. The wing is modelled as a cantilevered beam based on Euler- Bernoulli equations. Also, composite material is modelled based on lamina fiber-reinforced. Edge crack is modelled by additional boundary conditions and local flexibility matrix in crack location, Castigliano's theorem and energy release rate formulation. Governing differential equations are extracted by Hamilton's principle. Using the separation of variables method, general solution in the normalized form for bending and torsion deflection is achieved then expressions for the cross-sectional rotation, the bending moment, the shear force and the torsional moment for the cantilevered beam are obtained. The cracked beam is modelled by separation of beam into two interconnected intact beams. Free vibration analysis of the beam is performed by applying boundary conditions at the fixed end, the free end, continuity conditions in the crack location of the beam and dynamic stiffness matrix determinant. Also, the effects of various parameters such as length and location of crack and fiber angle on natural frequencies and mode shapes are studied. Modal analysis results illustrate that natural frequencies and mode shapes are affected by depth and location of edge crack and coupling parameter.

THERMAL EFFECTS ON THE STRAIN ENERGY RELEASE RATE FOR EDGE DELAMINATION IN CRACKED LAMINATED COMPOSITES

  • Soutis, C.;Kashtalyan, M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.1-6
    • /
    • 2001
  • In this paper, edge delaminations in cracked composite plates are analytically investigated. A theoretical model based upon a sub-laminate approach is used to determine the strain energy release rate, $G^{ed}$, in [$\pm$$\theta_m$/$90_n$]$_s$ carbon/epoxy laminates loaded in tension. The analysis provides closed-form expressions for the reduced stiffness due to edge delamination and matrix cracking and the total energy release rate. The parameters controlling the laminate behaviour are identified. It is shown that the available energy for edge delamination is increased notably due to transverse ply cracking. Also thermal stresses increase substantially the strain energy release rate and this effect is magnified by the presence of matrix cracking. Prediction for the edge delamination onset strain is presented and compared with experimental data. The analysis could be applied to ceramic matrix composite laminates where similar mechanisms develop, but further experimental evidence is required.

  • PDF