• Title/Summary/Keyword: electrcal properties

Search Result 4, Processing Time 0.021 seconds

Properties of Polyaniline Blends (폴리아닐린 블렌드의 물성)

  • Kim, Dong-Hyun;Lee, Tae-Hee;Kim, Jong-Eun;Suh, Kwang-S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1428-1430
    • /
    • 2002
  • Polyaniline/polystyrene conducting blends were prepared and measured with the mechanical properties such as tensile strength and elongation and the electrcal properties such as surface resistance, electrical conductivity and dielectric loss tangent. The percolation threshold concentration of blends was 5phr of polyaniline and the morphology of blends was setting colser to that of polyaniline at higher concentration. The dielectric loss increased up to $10^5$ at the 50 % of polyaniline and was much influenced by frequency than temperature at higher concentration of polyaniline.

  • PDF

Excellent properties of Indium Tin Oxide-Carbon Nano tube Nano composites at low temperatures by Nano Cluster Deposition technique

  • Pammi, S.V.N.;Park, Jong-Hyun;Chanda, Anupama;Park, Yeon-Woong;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.7-7
    • /
    • 2010
  • Indium tin oxide (ITO) - SWNT nano crystalline composites was synthesized at low temperature(${\sim}250^{\circ}C$)using Nano Cluster Deposition technique by Metal Orhoganic Chemical Vapor Deposition method. XRD patterns of ITO- SWNT composite shows pure cubic phases without any secondary phase. I-V measurement gives resistance of 12 ohms for Sn doped (3 wt %) indium oxide-SWNT composites. The electrical conductivity of the nano composites is significantly enhanced compared to the SWNT.

  • PDF

Effect of Electron Irradiation on the Electrical and Optical Properties of SnO2 Thin Films (전자빔 표면조사에 따른 SnO2 박막의 전기적, 광학적 특성 연구)

  • Song, Young-Hwan;Moon, Hyun-Joo;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.3
    • /
    • pp.109-112
    • /
    • 2016
  • We have considered the influence of electron irradiation on the optical and electrical properties of $SnO_2$ thin films deposited with reactive RF magnetron sputtering. After deposition, the films electron irradiated at 300 eV shows a lower sheet resistance of $277{\Omega}/{\square}$ and the optical transmittance in a visible wave length region also influenced with the electron irradiation energy. The film that electron irradiated at 400 eV shows a higher optical transmittance of 82.6% in this study. By comparison of figure of merit, it is concluded that the post-deposition electron irradiation at 300 eV is the optimum condition for the enhancement of opto-electrcal performance of $SnO_2$ thin film in this study.

Electrochemical Properties of Pyrrole/Thiophene Polymer Composite (피롤/티오펜 고분자 복합체의 전기화학적 성질)

  • Cha, Seong Keuck;Choi, Kyu Seong;Ahn, Byuong Kee;Kang, Sang Jin
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.7
    • /
    • pp.467-473
    • /
    • 1996
  • Although a polypyrrole shows better electrical conductivity, 100∼400 ${\Omega}^{-1}cm^{-1}$, than other organic conducting polymers, its electrical conductivity will be worsen in the presence of the oxygen due to its easy oxidation. On the other hand, polythiophene shows better stability in the air while its electrcal conductivity is poor compared to the polypyrrole. We succeed to develope the mixed polymer electrode that is stable in the air and shows a good redox characteristics. The mixed polymer electrode has been prepared by the electrical polymerization of polypyrrole on the Pt electrode as 1.70 C$cm^{-2}$ and then coating with polythiophene as 0.34 C$cm^{-2}$. The polymerization rate of polythiophene was $3.89{\times}10^{-8}$ at the bare Pt electrode and $6.07{\times}10^{-8}cms^{-1}$ at the mixed polymer electrode. And the standard rate constants of each electrode were $5.16{\times}10^{-6}\;and\;3.94{\times}10^{-4} cms^{-1}$ respectively. Also, the electrocatalytic rate of the polypyrrole polymer electrode was $3.45{\times}10^{-3}cm^3mol^{-1}s^{-1}.$ We found the immobilized layer at the modified electrode acted as an electrocatalyst. Finally, this polymerization process at the Pt electrode was the electron transfer controlled, but that the mixed polymer electrode was the diffusion and charge transfer controlled.

  • PDF