• Title/Summary/Keyword: electric motor unit carbody

Search Result 3, Processing Time 0.017 seconds

Environmental Impact Assessment of the Carbody of a Electric Motor Unit(EMU) Using Simplified Life Cycle Assessment(S-LCA) (간략화 전과정 평가(S-LCA) 기법을 이용한 전동차 구체의 환경성 평가)

  • Lee Jae-Young;Mok Jai-Kyun;Jeong In-Tae;Kim Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.520-524
    • /
    • 2005
  • It is consequential to reduce the environmental impact of a product for sustainable development in 21st Century. In the field of transportation, especially, the technological market concerned about reduction and assessment of greenhouse gas emission is expected to be extended. The LCA gas been esteemed and utilized as a realistic alternative greenhouse gas emission is expected to be extended. The LCA has been esteemed and utilized as a realistic alternative to improve the environment by the assessment of environmental impacts. In this study, simplified life cycle assessment(S-LCA), was performed to analyze the environmental impacts quantitatively, which were produced through the life cycle of a electric motor unit(EMU). The object of the present work is rth investigate main parameters of environmental impacts and to establish the plans to improve the environment impact of EMU. As a result of quantitative assessment for environmental impact and manufacturing, the EMU carbody made of SUS showed acidification(AD) and marine water aquatic ecotoxicity(MAET) the most, while that made of Mild showed high impact of global warning(GW) and abiotic resources depletion(ARD). For the SUS EMU, the high AD and MAET impact is occurred by the discharged pollutants during acid-washing process. Also, high value of GW and ARD for Mild EMU is resulted from the consumption of iron ore, coal and crude oil during manufacturing. Therefore, the environment impact of carbody would be decreased by enhancing of energy efficiency and the lightening the weight of it.

A Study on $CO_2$ Emissions with the Carbody Material of Electric Motor Unit (EMU) using Life Cycle Inventory Analysis (LCIA) (전과정목록 분석을 이용한 전동차의 구체 재질에 따른 $CO_2$ 배출량에 관한 연구)

  • Kim, Yong-Ki;Chun, Yoon-Young;Lee, Jae-Young
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1123-1125
    • /
    • 2006
  • As Kyoto protocol has been effective in 2005, the reduction of $CO_2$ emission is a global urgent problem. In Korea, the $CO_2$ emission of transportation increases continuously, which can be solved partially by the use of railroad. Therefore, it is necessary to calculate exactly the $CO_2$ emission of railroad through life cycle approach. In this study, the $CO_2$ emission of electric motor unit (EMU) was evaluated with its carboy material using life cycle inventory analysis (LCIA). Among the life cycles of EMU, $CO_2$ emission was the highest in the running phase. As the total weight of EMU was lowered, $CO_2$ emission was reduced. In conclusion, the light-weighting of EMU can reduce $CO_2$ emission efficiently.

  • PDF

Development for pneumatic plug door system (공기식 플러그도어 시스템 개발)

  • 홍재성;김연수;이호용;김원경;양우봉;신진호
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.162-169
    • /
    • 2001
  • There are many EMU lines in korea. But only one type has been applied to passenger side door. This type is so called "Pocket sliding type". This type has some week points. To begin with, it is not good for decreasing the noisy form the outside of carbody. And the second time, if some obstacles are put between sliding door, only driver can operate re-open door switch manually ill driver's cab. This type is so dangerous for passengers. So many people want to the new door type that have no defect. KRRI joined forces with ANT corporation for pneumatic plug door system. This type will be good for decreasing the noisy, passenger′s safe. The project was started at the last year on November and will be finished on June, this year In this paper, we will deal with the role of cylinder, planetary gear, door control unit, dynamic mechanism, and the report of FEM, type test. This paper will contribute to tile electric motor control plug door system.

  • PDF