• Title/Summary/Keyword: electrolytic diaphragm

Search Result 12, Processing Time 0.029 seconds

Characteristics of Strong Alkaline Electrolyzed Water Produced in All-in-one Electrolytic Cell (일체형 전해조에서 생산된 강알카리성 전해수의 특성)

  • Lee, Ho Il;Rhee, Young Woo;Kang, Kyung Seok
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.446-450
    • /
    • 2012
  • Strong alkaline electrolyzed water which is produced in cathode by electrolyzing the solution where electrolytes (NaCl, $K_2CO_3$ etc.) are added in diaphragm electrolytic cell, is eco-friendly and has cleaning effects. So, it is viewed as a substitution of chemical cleaner. In addition, strong alkaline electrolyzed water is being used by some Japanese automobile and precision parts manufacturing industries. When strong alkaline electrolyzed water is produced by using diaphragm electrolytic cell, it is necessarily produced at the anode side. Since strong acidic electrolyzed water produced is discarded when its utilization cannot be found, production efficiency of electrolyzed water is consequently decreased. Also, there is a weakness electrolytic efficiency is decreasing due to the pollution of diaphragm. In order to overcome this, non-diaphragm all-in-one electrolytic cell integrated with electrode reaction chamber and dilution chamber was applied. Strong alkaline electrolyzed water was produced for different composition of electrolytes, and their properties and characteristics were identified. In comparing the properties between strong alkaline electrolyzed water produced in diaphragm electrolytic cell and that produced in all-in-one electrolytic cell, the differences in ORP and chlorine concentration were found. In emulsification test to confirm surface-active capability, similar results were obtained and strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell was identified to be useable as a cleaner like strong alkaline electrolyzed water produced in diaphragm electrolytic cell. Strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell is thought to have sterilizing power because it has active chlorine which is different from strong alkaline electrolyzed water produced in diaphragm electrolytic cell.

Water Properties of Electrolytic Machine by Stainless Diaphragm and Effects of Electrolytic Ice Water Storage For Keeping Freshness of Squid, Todarodes pacificus (스테인레스 극판을 이용한 전해수장치의 수질특성과 오징어 선도유지를 위한 전해수 빙장 효과)

  • Lee, Nahme-Gull
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.18 no.3
    • /
    • pp.293-301
    • /
    • 2006
  • This study was undertaken to prolonging the freshness in Squid(Todarodes pacificus) on the effects of ice storage methods(tap water ice, electrolytic water ice) using stainless diaphragm electrolytic instrument and also test an efficiency of instrument. Basically, stainless diaphragm electrolytic instrument studied for changes of pH on difference water flow and ampere. The lower water flower and higher ampere made low pH on acid part of electrolytic instrument. Squid samples were stored in tap water ice, acid part of electrolytic water and base part of electrolytic water and used in studying the changes of VBN and skin color through storage. Acid water had strong sterilization effects and VBN was lower levels of acid water than the others. Base water had not sterilization effects. Tap water ice storage was more sterilizing effects than base water ice storage but less effects than acid water ice storage. Lightness of Squid skin showed getting decrease at storage of ice water of all storage methods but acid water ice storage showed more retarding than the other two storage. From these results, it could be suggested that acid electric water ice storage is effective in extendance the shelf-life of squid at chilled storage.

Characteristics of Electrolyzed Water Manufactured from Various Electrolytic Diaphragm and Electrolyte (전기분해 격막 및 전해액에 따른 전해수의 특성 비교)

  • 정진웅;김종훈;김병삼;정승원
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.99-105
    • /
    • 2003
  • This study was carried out to investigate the efficacy of surface sterilization and the physicochemical properties of electrolyzed water manufactured from various electrolytic diaphragm and electrolyte. Physical properties of electrolyzed water manufactured from the diaphragm system were the most effective at the following conditions; the distance between diaphragms was 1.0 mm and the supplying rate of 20% NaCl was 6 mL/min. The ORP, HClO content and pH at above conditions were 1,170 mV, 100 ppm and 2.5, respectively. And two stage electrolyzed system was more effective than one stage electrolyzed water manufactured from non-diaphragm system, with 4 mL/min supplying rate of 20% NaCl, was similar to the most effective diaphragm system. But ORP, HClO content and pH were abut 800 mV, 200 ppm and 9 level, respectively. Sealed electrolyzed water could be preserved more than one month at room temperature with ORP of 750 mV in non-diaphragm system and 1,150 mV in diaphragm system, and HClO content of 100 ppm. Twelve kinds of microorganism tested were sterilized within 30 seconds from initial total counts of 10$\^$5/∼10$\^$6/cfu/ml by electrolyzed water. Though the ORP and HCIO contents of electrolyzed water manufactured from various electrolyte were higher in order of NaCl>KCl>CaCl$_2$, there were no difference between the electyolytes in the efficacy of sterilization. Salmonella typhi and Vibrio Proteolyticus were also sterilized by electrolyzed water manufactured from elctrolytes of NaCl CaC1$_2$and KCl

An Electrolytic Treatment of Shipboard Sewage by Using DSA Electrode(II) -Continuous Electrolytic Treatment- (DSA 전극에 의한 선박오폐수의 전해처리(II))

  • 김인수;조권희;남청도
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.2
    • /
    • pp.77-84
    • /
    • 1997
  • For the effective treatment of shipboard sewage continuously, a non-diaphragm electrolytic treatment device using DSA type insoluble electrode, Ti/IrO2, anode and H-C metal cathode, was studied. The most effective electrolytic conditions were obtained when cell clearance, 6mm, pH 5-6 and the concentration of seawater, more than 20% as batch test results. The COD removal rate was varied in logarithmic function, showed as C=Coe-KE and the required current was E = A/QCo [A.min/mgCOD]. When the COD removal effeciency was more than 90%, the electrolytic reaction constant was 0.02.

  • PDF

Comparison of Characteristics on Electrolyzed Water Manufactured by Various Electrolytic Factors (전해인자에 따른 전기분해수의 특성 비교)

  • Kim, Myung-Ho;Jeong, Jin-Woong;Cho, Young-Je
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.416-422
    • /
    • 2004
  • Efficacy of surface sterilization and physicochemical properties of electrolyzed water manufactured depending on electrolyte, materials, and type of electrolytic diaphragm used were investigated. Physical properties of electrolyzed water manufactured from diaphragm system showed the highest effectiveness under at distance between diaphragms of 1.0 mm and 20% NaCl supplying rate of 6 mL/min. ORP, HClO (should defined) content, and pH at above conditions were 1,170 mV, 100 ppm, and 2.5, respectively. Two-stage electrolyzed system was more effective than one-stage one. Electrolyzed water manufactured from non-diaphragm system at 4 mL/min supplying rate of 20% NaCl was similar to the most effective diaphragm system, whereas ORP, HClO content, and pH were 800 mV, 200 ppm, and 9, respectively. Sealed electrolyzed water could be preserved more than one month at room temperature with ORPs of 750 and 1,150 mV in non-diaphragm and diaphragm systems, respectively, and at HClO content of 100 ppm. Physicochemical properties of electrolyzed water manufactured from electrolytic diaphragm of $IrO_{2}$ and Pt+Ir were more effective than that of Pt. ORP and HClO contents of electrolyzed water manufactured from various electrolytes were high in order of NaCl>KCl>$CaCl_{2}$, whereas no differences were observed among electrolytes in sterilization efficacy. Twelve kinds of microorganisms tested (initial total count, $10^{5}-10^{6}CFU/mL$) were sterilized within 1-2 min by electrolyzed water.

Synthesis of Cyclitol Derivatives (IV) Electrolytic Reduction of DL-epi-inosose-2 (Cyclitol 유도체 합성에 관한 연구 (제4보) DL-epi-inosose-2의 전해환원)

  • Sohn, Joo-Hwan;Nam, Chong-Woo;Park, Heung-Cho
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.93-99
    • /
    • 1972
  • To obtain the various kinds of inositol stereomers, we have selected the process of electrolytic reduction of DL-epi-inosose-2 using Ni, Ta, Cu, Mo, Pb, Sn, W, Cd and Hg etc., as cathode. We think that this process gives greater variety than chemical processes. DL-epi-inosose-2 was synthesized by chemical oxidation of myo-inositol, dissolved in aqueous solution of potassium hydroxide, and used as electrolytic solution. To prevent anodic oxidation of cathode products the H-type diaphragm cell was used. As the results of paper chromatography of cathodic products, we obtained the $R_f$ values of myo-inositol and epi-inositol were in good agreement with literature values.

  • PDF

Anodic Oxidation of Potassium Iodide Solution (Ⅰ) (요오드화칼륨 수용액의 양극산화 (제1보))

  • Nam, Chong-Woo;Kim, Hark-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.378-384
    • /
    • 1973
  • To investigate the mechanism of the reaction of electrolytic oxidation of iodide to iodate ions, polarization curves are determined in various kinds of solution using electrodeposited lead peroxide and platinum anodes. It was observed from the polarization curves that the limiting current is exists at concentration 1.5 M of potassium iodide, and these limiting current disappeared as potassium hydroxide was added up to concentration of 0.1 M. while in case of platinum anode, limiting current did not appear in dilute potassium iodide solution. These results are owing to the chemical reaction, $PbO_2+2I^{-}+2H^+{\to}PbO+I_2+H_{2}O$ ocurring at the surface of lead peroxide anode. Also, we studied to obtain the optimum conditions of electrolytic preparation of iodate from iodide solution using a cell without the diaphragm. The results are that; (a) addition of potassium dichromate at the anti-reducing agent is proper in concentration of 0.1 g/l, (b) electrolytic temperature is not so much effective in raising the current efficiency, (c) current efficiency is increased with current density, and (d) electrolysis is the most effective in weak alkaline solutions.

  • PDF

Anodic Oxidation of Iodate to Periodate by Lead Peroxide Anode (전착과산화납양극에 의한 옥소산염 전해산화)

  • Chong Woo Nam;Hak Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.324-329
    • /
    • 1971
  • In order to evaluate the mechanism of electrolytic oxidation of iodate and to determine the optimum conditions for the electrolysis, studies were made using the cells without diaphragm and the lead peroxide anode. Results are summarized as followings: 1) Current density vs. anode potential curve by lead peroxide electrode had the different limiting current densities from platinum electrode and was more positive than platinum electrode. 2) Additions of potassium bichromate in the electrolyte contribute to maintain high current efficiency. 3) In the acid and alkaline regions, the current efficiencies decreased by reduction of iodate and discharge of hydroxyl ion, so maximum current efficiency was shown at pH 7. 4) Higher current density lowered the current efficiency in the region of 60-80% conversion of iodate. 5) Influence of the conversion on current efficiency in the region of 60-80% conversion of iodate.

  • PDF

Electrolytic recovery of metals from the plating rinse water with fluidized bed electrode reactor (유동층전극 반응기를 이용한 폐수내의 중금속 회수)

  • Lee, Jea-Keun;Chun, Hai-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 1984
  • The fluidized bed electrode reactor(FBER) with conducting particles has been made use of the removal of metals from dilute electroplating rinse water. The electrolysis was carried out under the conditions of diaphragm current density with 2~28A/$dm^2$ and bed expansion with 20~50%. Recirculating batch operations have been shown that the metal concentration dropped exponentially and may be taken down to 10 ppm. And then, the current efficiency at a concentration of 10 ppm copper was 37% under the conditions of 30% bed expansion and 6 A/$dm^2$, and at concentrated electrolyte (2000ppm copper) was over 80% in the range of 8~28A/$dm^2$ and 20~50% bed expansion. One of the technical possibilities of fluidized bed electrolysis is the separation of copper and nickel from a mixed solution of copper and nickel.

  • PDF

Anodic Oxidation of Potassium Iodide Solution (II) (요오드화칼륨 수용액의 양극산화 (제2보))

  • Nam Chong Woo;Kim Hark Joon
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.373-380
    • /
    • 1974
  • Direct electrochemical preparation of periodate from iodide $(I^-{\to}{IO_4}^-)$ was investigated using a none-diaphragm cell and lead dioxide anode. The direct electrolytic conditions were combinations of the respectively results on the processes of iodate from iodide$(I^-{\to}{IO_3}^-)$, and periodate from iodate$({IO_3}^-{\to}{IO_4}^-)$ which were reported by the author, previously. The optimum condition was achieved when 1.0 M potassium iodide solution containing 0.5 g/l potassium dichromate as an anti-reducing agent was electrolyzed at anodic current density of $15{\AA}/dm^2$ and electrolytic temperature of $60^{\circ}C$. Under such a condition, the current efficiency was found to be 84 % at 98 % conversion of iodide to periodate. The explanation of electrode reaction was also given a consideration based on the polarization curves at lead dioxide anode in various electrolyte solutions.

  • PDF