• Title/Summary/Keyword: electrolyzed oxidizing water

Search Result 11, Processing Time 0.035 seconds

Evaluation of Electrolyzed Oxidizing Water as a Control Agent of Cucumber Powdery Mildew

  • Lee, Yong-Hwan;Cha, Kwang-Hong;Ko, Sook-Ju;Park, In-Jin;Park, Boung-In;Seong, Ki-Young
    • The Plant Pathology Journal
    • /
    • v.16 no.4
    • /
    • pp.206-210
    • /
    • 2000
  • The effect of the electrolyzed oxidizing water on Sphaerotheca fuliginea was investigated with germination and sporulation of the fungal conidia. The sporulation was inhibited by the electrolyzed oxidizing water of pH 2.5, 3.5, and 4.5, but was not inhibited by the distilled water adjusted pH with 1N-HCL solution. However, the electrolyzed oxidizing water did not affect conidial germination. The oxidation-reduction potential at pH 2.5 and pH 3.5 of electrolyzed oxidizing water were 1130 mV and 1060 mV, respectively, but those of distilled water adjusted with HCL solution were 550 mV and 490 mV, respectively. When the electrolyzed oxidizing water of ORP over 1100 mV was sprayed on cucumplanting, the disease severities of powdery mildew were about 8.5% and 19.2%, respectively. Disease severity of a standard control (triflumizole 30% WP, $500\textrm{mg}\textrm{/L}$) was about 3.0%, while that of plants without electrolyzed oxidizing water was to 45.8%.

  • PDF

Cleaning Effect of Electrolyzed Oxidizing Water by Containing Food Additives (식품첨가제를 첨가한 전해산화수의 세정효과)

  • 정승원;정진웅
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.240-247
    • /
    • 2002
  • This study, to enhance the sterilization, browning inhibition and precooling effect of electrolyzed oxidizing water(EOW) as cleaning water on food industry, was carried out to investigate the efficacy of electrolyzed oxidizing water(EOW) with 0.85% NaCl, 0.5% ethanol, polysorbate 80 of 1 ppm, 0.5% lemon juice and 0.5% citron juice. Escherichia coli KCTC 1039 with initial count of 5.63$\times$10$\^$8/ CFU/mL were reduced to <10$^1$CFU/mL after 15∼30 sec when it was treated by electrolyzed oxidizing water added with various food additives. Bacillus cereus KCTC 1012 were reduced to <10$^1$ CFU/mL after 2 minutes treatment with electrolyzed oxidizing water containing polysorbate 80 and ethanol. Iactobacillus plantarum KCTC 3108 were reduced to <10$^1$CFU/mL after 30 sec treatment with electrolyzed oxidizing water containing polysorbate 80, citron juice and lemon juice, respectively. Erwinia carotovora subsp. carotovora KCTC 2776 were reduced to <10$^1$CFU/mL after 30 sec treatment with electrolyzed oxidizing water containing polysorbate 80 and lemon juice. Browning inhibition effect was determined by comparison of polyphenol oxidase activity. Inhibition ratio of polyphenol oxidase was approximately 62∼84% in most treatments with the exception of 57% and 25% inhibition by 0.5% ascorbic acid and polysorbate 80, respectively. Sliced potato dipped in electrolyzed oxidizing water containing NaCl and citron juice for 30 minutes showed significantly low PPO activity, 64 units in treatment with NaCl and 91 units in treatment with citron juice. At the same time, changes in color value(△E) of sliced potato was below 3 in most treatments.

Quality Effects of Various Pretreatment Methods on the Properties of Peeled Chestnut during Storage (깐밤의 전처리 방법이 저장 중 품질에 미치는 영향)

  • Kim, Jong-Hoon;Jeong, Jin-Woung;Kweon, Ki-Hyun
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.462-468
    • /
    • 2007
  • In this study, the quality effect of soaking in alum water, soaking in electrolyzed oxidizing water, and freezing during storage, on peeled chestnuts, were analyzed. When soaked in 0.1% (w/v) alum water, peeled chestnuts showed good characteristics in terms of weight loss, decomposition, and color preservation. However, texture and taste qualities rapidly decreased with increases in storage time. When soaked in twice their own weight of electrolyzed oxidizing water(pH 2.61, ORP 1,142 mV) for 10 min, the samples were preserved in an optimally edible condition. When frozen at $-10^{\circ}C$ for 5 min, the samples were suitable for use as material for processed chestnut produce, as was also the case when pretreatment with electrolyzed oxidizing water was employed.

Antibrowning Effects of Electrolyzed Oxidizing Water with/without Freezing Point Depressing Agents on Peeled Chestnut during Storage (빙점강하제 첨가 전해산화수에 의한 깐밤의 저장 중 갈변억제 효과)

  • 정진웅;이선민;김은미;김종훈;김명호
    • Food Science and Preservation
    • /
    • v.8 no.4
    • /
    • pp.385-392
    • /
    • 2001
  • This study was to investigate the inhibiting effect of electrolyzed oxidizing (EO) water with/without freezing point depressing agents on polyphenol oxidase (PPO) activity of peeled chestnut. 0.85% sodium chloride, 0.5% citron and 0.5% lemon juice were used to freezing point depressing agents. The content of total phenolics was 13.36 mg% at the earlier stage of storage, and then suddenly increased at around 8∼1ldays. At the 11th day, PPO activity of untreated chestnut was 1,152 units, that was higher than any ethers. EO water adding lemon and citron juice showed synergistic effects on the enzyme inhibition, and their PPD activities were 143.3 and 180.22 units after 4 weeks, respectively. Sensory analysis showed that acceptance of peeled chestnuts was dependent on color and taste, which was related to PPO activity and sweetness. The peeled chestnut treated with EO water added citron or lemon juice tended to show the highest score fur acceptance.

  • PDF

Bactericidal Activity of Electrolyzed Water

  • Park, Sook-Hee;Park, Yoon-Mi;Chang, Dong-Suck;Shin, Il-Shik
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.108-109
    • /
    • 2002
  • Electrolyzed chlorous solutions, or electrolyzed oxidizing water [EW(+)] has attracted much recent attention as a low cost, but high-performance, new technology of potential use by food industry. the term EW(+) is used to describe an aqueous disinfectant produced by the electrolysis of a chlorine containing solution under a low-voltage direct current (Suzuki et al., 2002). (omitted)

  • PDF

Comparison of Shelf-life on Peeled Taro(Colocasia antiquorum SCHOTT) Stored in Various Immersion Liquids (박피 토란(Colocasia antiquorum SCHOTT)의 침지 보관액에 따른 저장효과 비교)

  • 정승원;정진웅
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.154-160
    • /
    • 2002
  • This study was carried out to investigate the efficacy of electrolyzed oxidizing(EO) water, electrolyzed oxidizing water with 0.5% citron juice and 0.1% aluminium potassium sulfate (APS) solution as the storing liquids to maintain quality and extend shelf life of peeled taro. Water content of peeled taro increased from 80.55% to 82.12∼84.24% after 25 days storage due to moisture absorption. However, there were no significant difference between treatments. In case of color value of peeled taro, L value was slowly decreased and a, b value was generally increased. Texture of peeled taro decreased from initial 4,520$\pm$75 g to 4,160$\pm$80 g after 25 days storage in EO water with 0.5% citron juice, which is the least reduction value in all treatments. Treatment of EO water with 0.5% citron juice maintained 6.99 mg%(57%) of total vitamin C after 25 days storage which showed highest total vitamin C content between treatments. In most treatments, total sugar was decreased in fast rate for 15 days storage and slowly decreased after 15 days storage. Free sugar content was not changed significantly during storage. In case of sucrose content which is the major portion of free sugar, reduction continued until the midst of storage. and after that it increased to 1.5∼2 times of initial contents. However, there were no differences between treatments and storage days in contents of fructose, glucose and maltose. Major amino acids in peeled taro were aspartic acid and glutamic acid with 1,084.8 and 691.8 mg/100g respectively. At 25 days of storage, aspartic acid content in treatment of EO water was increased about 13.9%. Treatment of EO water with 0.5% citron juice was the most effective in respect to the reduction ratio of total amount of essential amino acids.

Disinfection effect and formation characteristics of disinfection by-product at the Electrolyzed Water (전기분해수 살균효과 및 소독부산물 생성 특성 평가)

  • Cho, Youngman
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.547-554
    • /
    • 2013
  • Chlorine has strong oxidizing power, also it is many advantages over other disinfectants such as the residual characteristic and economic feasibility. However, chlorine also has disadvantages such as creating disinfection by-products of chlorine as THMs. In particular, the most deadly disadvantage of chlorine is that it is extremely poisonous toxins about all alive lives. Disinfection with electrolysis water can be a very useful way Because you do not have to worry about chlorine's dangerous. In this study, we evaluated the potential as a disinfectant, across the evaluating disinfection effect and generating characteristic of by-products. The electrolyzed water could be obtained removal efficiencies of over 99.9 % the coliform by operating condition such as residence time, current density (voltage), the electrode gap. The residual chlorine be generated 10,000 mg/L in current density $1.0A/dm^2$ and residence time of 10 minutes. The residual chlorine concentration was possible to maintain a stable. The by-products generated by high concentration residual chlorine in the reactor such as trihalomethanes, haloaceticacid, chloralhydrate, haloacetonitrile were detected in less than a water quality standards. At the concentration of less than residual chlorine of 1 ppm, the chlorine disinfection by-products be generated most below the detection limit.

Comparison of Quality Characteristics of Sesame leaf Cleaned with Various Electrolyzed Water during Storage (다양한 전기분해수 세정처리에 따른 깻잎의 저장중 품질특성 비교)

  • Jeong Jin-Woong;Kim Jong-Hoon;Kwon Kee-Hyun
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.558-564
    • /
    • 2005
  • This study was carried out to investigate the cleaning effect of sesame leaf, the sterilization effect and physicochemical properties, treated with various electrolyzed water. Initial physicochemical properties could be kept more than 1 month in electrolyzed oxidizing water(EW-1) of diaphragm type and 15 days in electrolyzed water(EW-2 and EW-3) of non-diaphragm system, there was no significant difference by storage temperature. 4 kinds of microorganism (initial total counts, $10^7\~10^9$ CFU/mL) were sterilized within $0.5\~1$ minutes by electrolyzed water. In fresh sesame leaves, total viable cell count and coliform group in the treatment of electolyzed water were decreased to about $2\~3$ log scale comparing non-treated ones. Especially Bacillus cereus was not detected until 13th day when treated with EW-l. Decaying ratio of sesame leaf appears on day 6 of storage in the untreated but the treatments of electrolyzed water has no sign until day 10 of storage. Change in color difference(${\Delta}E$) during storage was observed the treatments of electrolyzed low-alkaline water(EW-2) and electrolyzed neutral water(EW-3) were very desirable at the level $1\~2$ after day 13 of storage comparative to the untreated Change of Chlorophyll content was biggest decreased to 6.8 $mg\%$ on the untreated and decreased least to 8.35 $mg\%$ on EW-3 treated group on 13th day from initial value of $9.0\~10.3\;mg\%$ The overall sensory evaluation appeared most acceptable in the treatments of EW-2 and EW-3.

Composite Oxidizing Agents Generation Using Electrolysis of Dilute Hydrochloric Acid (묽은 산 전기분해에 의한 복합 산화제 생성)

  • Kang, Shin-Young;Park, Jong-Hun;Kim, Sang-Hyoun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.329-333
    • /
    • 2016
  • Disinfection by electrolysis would be useful for small wastewater treatment plant, combined sewer overflow, ballast water, swimming pool, and fish farming, where the transport, storage, and the use of chlorine gas is limited. This study investigated the feasibility of the electrolysis of dilute hydrochloric acid (HCl) for disinfection. The effects of HCl concentration, voltage and reaction time on the generation of oxidizing agents, HOCl, $O_3$, and $H_2O_2$, were examined in a series of batch test. The highest current efficiency was 99.3% which was found at 2.2%, 3 V, and 5 min of HCl concentration, voltage, and reaction time, respectively. Continuous electrolysis at 2.2% HCl, 3 V, and 5 min of the hydraulic retention time showed 97.4% of the current efficiency. Addition of sodium chloride up to 20 g/L linearly increased the oxidizing agents production. 92.2% of total coliforms were removed by the contact with the electrolyzed water.