• Title/Summary/Keyword: electromagnetic interference shielding effectiveness

Search Result 49, Processing Time 0.038 seconds

Electromagnetic Interference Shielding Effect of Fiber Reinforced Composites with Stainless Fiber Conductive Filler (스테인레스 섬유를 충전제로 사용한 섬유강화 복합재료의 전자파 차폐 효과)

  • Han, Gil-Young;Song, Dong-Han;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.71-78
    • /
    • 2010
  • The objective of this research is to investigate the influence of material characteristic and design on to the electromagnetic interference (EMI) shielding characteristics. Basalt glass fiber reinforced composite specimens with stainless fiber conductive filler were manufactured to perform the electromagnetic interference shielding effectiveness(SE) experiments. In order to reflection and absorb the specimen in electromagnetic fields, flanged coaxial transmission line sample holder was fabricated according to ASTM D 4935-89. Electromagnetic shielding effectiveness(EMSE) was measured quantitatively to examine the electromagnetic shielding characteristics of designed specimens. The result of EMI shielding experiments showed that maximum EMSE value of sandwich type specimens with GSG(basalt glass fiber/stainless fiber/basalt glass fiber) and SGS(stainless fiber/basalt glass fiber/stainless fiber) were 65dB and 80dB at a frequency of 1,500MHz, respectively.

Electromagnetic Interference Shielding Effectiveness of Hybrid Conductive Fabrics (하이브리드 전도성 직조섬유의 전자파 차폐효과)

  • Han, Gil-Young;Kim, Ki-Yeol;Yun, Tae-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • This study investigated electromagnetic interference (EMI) shielding effectiveness (SE) of hybrid conductive fabrics. The coaxial transmission line method was used to measure the EMI Shielding effectiveness of the conductive fabrics. We designed and constructed a measuring system, consisting of a network analyzer and a device that serves as a sample holder and at the same time as a transmission medium of incident electromagnetic waves. The measurements of SE were carried out in a frequency range from 100 MHz to 2 GHz. The results of the EMI shielding experiments showed that the maximum electromagnetic shielding effectiveness (EMSE) values of sandwich type C/A/C (carbon fiber sheet/aluminum foil tape/carbon fiber sheet) and C/Ni/C (carbon fiber sheet/magnetic shielding foil/carbon fiber sheet) samples were 55 dB and 113 dB, respectively, at a frequency of 1.9 GHz.

Electromagnetic Interference Shielding Effectiveness of Fiber Reinforced Composites Hybrid Conductive Filler (하이브리드 전도성 Filler 섬유강화 복합재료의 전자파 차폐효과)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.35-39
    • /
    • 2009
  • The main objective of this study was to investigate fiber reinforced composite materials (FRCM) with electromagnetic shielding characteristics using aluminum (Al) film and copper (Cu) meshes. This study investigated the electromagnetic interference (EMI) shielding effectiveness (SE) of fiber reinforced composites filled with Al film, Cu meshes, and nano carbon black as hybrid conductive fillers to provide the electromagnetic shielding property of the fiber reinforced composites. The coaxial transmission line method of ASTM D 4935-89 was used to measure the EMI shielding effectiveness of composites in the frequency range of 300 MHz to 1.5 GHz. The variations of SE of FRCM with Al film, fine Cu, and general Cu meshes are described. The results indicate that the FRCM having Al film exhibited up to 75 dB of SE at 1.5 GHz.

Technical Trends of Flexible, Transparent Electromagnetic Interference Shielding Film (유연한 투명 전자기 간섭 차폐 필름의 기술개발 동향)

  • Lim, Hyun-Su;Oh, Jung-Min;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.21-29
    • /
    • 2021
  • Recently, semiconductor chips and electronic components are increasingly being used in IT devices such as wearable watches, autonomous vehicles, and smart phones. As a result, there is a growing concern about device malfunctions that may occur due to electromagnetic interference being entangled with each other. In particular, electromagnetic wave emissions from wearable or flexible smart devices have detrimental effects on human health. Therefore, flexible and transparent electromagnetic interference (EMI) shielding materials and films with high optical transmittance and outstanding shielding effectiveness have been gaining more attention. The EMI shielding films for flexible and transparent electronic devices must exhibit high shielding effectiveness, high optical transmittance, high flexibility, ultrathin and excellent durability. Meanwhile, in order to prepare this EMI shielding films, many materials have been developed, and results regarding excellent EMI shielding performance of a new materials such as carbon nano tube (CNT), graphene, Ag nano wire and MXene have recently been reported. Thus, in this paper, we review the latest research results to EMI shielding films for flexible and transparent device using the new materials.

Electrical Properties and Electromagnetic Shielding Effectiveness of Milled Carbon Fiber/Nylon Composites (분쇄형 탄소 섬유/나일론 복합재료의 전기적 성질과 전자파 차폐 효율)

  • 김창제;최형도;서광석;윤호규
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.201-209
    • /
    • 2003
  • DC and AC electrical conductivity and electromagnetic interference shielding effectiveness of milled carbon fiber/nylon composites were investigated with the kind of nylon matrix. Percolation transition at which the conductivity is sharply increased was observed at about 7 vol% of milled carbon fiber. Nylon 46 as a matrix was more effective to obtain high electrical conductivity than nylon 6, and the difference in conductivity was occurred by the treatment of coupling agent. Frequency dependence of AC conductivity could be explained by relaxation phenomenon at just below percolation and resonance phenomenon at 40 vol% of carbon fiber, respectively. Negative temperature coefficient phenomenon was found in all composites. Electromagnetic interference shielding effectiveness was increased with the concentration of carbon fiber. At a high conductivity region the return loss was more dominant to the total shielding effectiveness than the absorption loss.

Shielding Effectiveness of Electromagnetic Interference in ABS/Nickel Coated Carbon Fiber and Epoxy/Cu-Ni Fabric Nano Carbon Black Composites (ABS/Nickel 코팅 탄소섬유와 Epoxy/Copper-Nickel 직조 섬유 복합재료의 전자파차폐 효과)

  • Han, Gil-Young;Jung, Woo-Chul;Yang, In-Young;Sun, Hyang-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.169-174
    • /
    • 2012
  • Electromagnetic interference(EMI) shielding effectiveness(SE) was investigated in of woven fabric made of epoxy/copper-nickel fabrics and nickel coated carbon fiber reinforced acrylonitrile-butadiene-styrene(ABS) composites. The coaxial transmission line method was used to measure the EMI shielding effectiveness of the composites. We designed and constructed a measuring system, consisting of a network analyzer and a device that plays the serves as a sample holder and at the same time as a transmission medium of the incident electromagnetic wave. The measurement of SE were carried out frequency range from 100MHz to 2GHz. It is observed that the SE of the composits is the frequency dependent increase with the increase in nickel coated carbon fibre volume fraction. The nickel coating with 20wt% ABS composite was shown to exhibit up to 60dB of SE. The result that nickel coated carbon fibre ABS composite can be used for the purpose of EMI shielding as well as for some microwave applications.

EMI Shielding Efficiency of Recycled plastic/Hybrid Conductive filer Composites filled Electro Arc furnace Slag (제강Slag 충진 폐플라스틱/복합 전도성 filler복합재료의 전자파 차폐 효과)

  • Kang Young-Goo;Song Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.80-85
    • /
    • 2004
  • Electromagnetic interference(EMI) shielding characteristics of composite filled with Cu flake and carbon brush powder as hybrid conductive filler and EAF slag have been studied. The coaxial transmission line method of ASTM D4935-99 was used to measure the EMI Shielding effectiveness of composites as formulation in frequency rage $100\~1,000MHz$ The SE also increases with the increase in flier loading. The hybrid filler filled composites show higher SE compared to that of only Cu flake. The correlation between SE and conductivity of the various composites is also discussed. The results indicate that the composites having higher filler loading$({\geq}40wt.\%)$ can be used for the purpose of safety materials to protect hazardous electromagnetic interference.

A Study on Electromagnetic Interference Shielding Effectiveness of the Metal Powders and Nano Carbon black /Fiber Reinforced Epoxy composites (메탈 파우더와 나노 카본 블랙/섬유강화 복합재료의 전자파 차폐효과에 관한 연구)

  • Han Gil-Young;Kim Jin-Seok;Ahn Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.100-107
    • /
    • 2006
  • The objective of this research is to investigate the electromagnetic interference(EMI) shielding characteristics of fiber reinforced composites. We fabricated glass and carbon fiber reinforced composites filled with metal powder and nano carbon black. The measurements of shielding effectiveness(SE) were carried out frequency range 300MHz - 1GHz for commercial purposes such as electric or telecommunication devices. The return loss and loss due to absorption were also measured as a function of frequency in the micro wave(300MHz-1GHz) region. It is observed that the SE of the composites is the frequency dependent, increase with the increases in filler loading. The Mg metal powder filled composite showed higher SE compared to that of carbon black. The Mg metal powder/epoxy composite was shown to exhibit up to 40dB of SE. The results indicates that the composite having higher filler loading can be used for the purpose of EMI shielding as well as for some microwave applications.

A Study on Electromagnetic Interference Shielding Effectiveness of the Aluminum film, Conductive Fabric and Nano Carbon black/Carbon Fiber Reinforced Composites (알루미늄 필름, 전도성 직조섬유/나노 카본블랙 탄소섬유복합재료의 전자파 차폐효과에 관한 연구)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.10-16
    • /
    • 2008
  • This study investigated electromagnetic interference(EMI) shielding effectiveness(SE) of the aluminum film, conductive fabric and nano carbon black carbon fiber reinforced composites. We fabricated carbon fiber reinforced composites filled with nano carbon black where they bonded aluminum film and conductive fabric. The measurements of SE were carried out frequency range from 300MHz to 1.5GHz. It is observed that the SE of the bonded aluminum film and conductive fabric composites is the frequency dependent, increase with the increase in filler nano carbon black content. The aluminum film bonded composites showed higher SE compared to that of carbon black and conductive fabric. The aluminum film bonded epoxy composite was shown to exhibit up to 80dB of SE. The result that aluminum film bonded composite can be used for the purpose of EMI shielding as well as for some microwave applications.

  • PDF