• Title/Summary/Keyword: electron optics

Search Result 188, Processing Time 0.054 seconds

Study on The Electron-Beam Optics in The Micro-Column for The Multi-Beam Lithography (다중빔 리소그래피를 위한 초소형 컬럼의 전자빔 광학 해석에 관한 연구)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.43-48
    • /
    • 2009
  • The aim of this paper is to describe the development of the electron-beam optic analysis algorithm for simulating the e-beam behavior concerned with electrostatic lenses and their focal properties in the micro-column of the multi-beam lithography system. The electrostatic lens consists of an array of electrodes held at different potentials. The electrostatic lens, the so-called einzel lens, which is composed of three electrodes, is used to focus the electron beam by adjusting the voltages of the electrodes. The optics of an electron beam penetrating a region of an electric field is similar to the situation in light optics. The electron is accelerated or decelerated, and the trajectory depends on the angle of incidence with respect to the equi-potential surfaces of the field. The performance parameters, such as the working distances and the beam diameters are obtained by the computational simulations as a function of the focusing voltages of the einzel lens electrodes. Based on the developed simulation algorithm, the high performance of the micro-column can be achieved through optimized control of the einzel lens.

  • PDF

A Study on Electromagnetic Shield Coating of Ocular Lens (안경렌즈의 전자파 차폐 코팅에 관한 연구)

  • Kim, Ki-Hong;Park, Dae-Jin;Kim, In-Su
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.2
    • /
    • pp.115-119
    • /
    • 2006
  • Electromagnetic shielding, transparent ITO coating layers have deposited on ocular lens substrate by magnetron sputtering. We investigated the effect induced by the substrate temperature on coating layer. The characteristics of the coating layers were analyzed using surface profiler, four-point probe, XRD, spectrophotometer and Auger Electron spectroscopy. As substrate temperature became higher, carrier concentration was increased and transmittance in the visible region was increased, too.

  • PDF