• Title/Summary/Keyword: electrospinning

Search Result 524, Processing Time 0.043 seconds

Multi-Nozzle Electrospinning Process to Fabricate Uniform Polymer Nanofiber Mats (균일한 고분자 나노섬유 매트 제작을 위한 다중 노즐 전기방사 공정 연구)

  • Lee, Bong-Kee;Park, Jae-Han;Park, Geon-Jung;Park, Kwang-Ryun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.120-126
    • /
    • 2018
  • In the present study, the multi-nozzle electrospinning process is investigated for the fabrication of uniform polymer nanofiber mats. Electrospinning has been one of the simple and efficient methods to manufacture polymer nanofibers and their mats. Although a typical electrospinning has many advantages such as simple system and operation, various materials, and cost-effectiveness, a relatively low productivity prevents it from being used in practical applications. Thus, the multi-nozzle electrospinning system with the adjustable nozzle position and rotating drum collector is designed and produced in this study. In particular, the effects of the inter-nozzle distance and spatial arrangement of nozzles on the uniformity of the electrospun nanofibers are investigated. With this multi-nozzle electrospinning process, the maximum flow rate of the supplied polymer solution for a uniform electrospinning increases, which indicates the enhanced productivity.

Effects of Electrospinning Parameters on the Fiber Formation and Application (전기방사 조건에 따른 나노섬유상의 구조 및 응용)

  • RYU, HO SUK;PARK, JIN SOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.71-80
    • /
    • 2018
  • Electrospinning is a versatile technique that utilizes electrostatic forces to produce very thin and fine fibers of polymer ranging from submicron to nanometer scale. The technique can be applied to fibers of a various polymer types. Working parameters in the electrospinning are very important to understand not only the nature of electrospinning but also the conversion of polymer solutions into nanofibers through electrospinning. Those parameters in the electrospinning can be broadly divided into three parts. The first parameter is solution parameters such as molecular weight of polymer, concentration, viscosity, surface tension and conductivity/surface charge density of solution. The second parameter is process such as voltage, distance between the collector and the tip of the syringe, shape of collectors, flow rate. The third parameter is ambient parameters such as humidity and temperature. Fibers which made by electrospinning with working parameters are applied for various fields according to shape such as medical, cloth, photodiode, a sensor technology, catalyst, filtration, battery etc.

Nanofibers from electrically driven viscoelastic jets: modeling and experiments

  • Carroll, Colman P.;Zhmayev, Eduard;Kalra, Vibha;Joo, Yong-Lak
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.153-164
    • /
    • 2008
  • Modeling and experiments of three electrospinning systems have been presented and they are i) axisymmetric instabilities in electrospinning of various polymeric solutions, ii) non-isothermal modeling of polymer melt electrospinning, and iii) control of nanoparticle distribution and location via confined self-assembly of block copolymers during electrospinning. It has been demonstrated that predicted simulations are in good agreement with corresponding electro spinning experiments, and theoretical analysis provides fundamental understanding of phenomena that take place during electrospinning of various polymeric liquids.

Rare earth oxide luminescence materials via electrospinning: synthesis and characteristics

  • Hou, Zhiyao;Lin, Jun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.200-203
    • /
    • 2009
  • One-dimensional rare earth oxide luminescence nano materials have been prepared by a combination method of sol-gel process and electrospinning. Systematic studie s on optical properties indicate that electrospinning is a facile and novel route for development luminescen ce materials that are useful in fluorescent lamps an d field emission dispalys.

  • PDF

Pattern of polymer nanofibers produced by electrospinning (전기방사된 나노섬유의 Pattern 연구)

  • Kim, Kwan-Woo;Lee, Keun-Hyung;Lee, Douk-Rae;Kim, Hak-Yong;Kim, Sung-Ryong
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.171-172
    • /
    • 2003
  • In recent years, interest in electrospinning has been quickly increased, because electrospinning is a process capable of making polymer fibers in the range of nano to a few microns diameters[1,2]. The electrospinning was patented by Formhals in 1934[2] and most of studies reported on the subject of electrospinning have been focused on its phenomena[3] and on processing parameters [4-5]. (omitted)

  • PDF

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

  • Jwa, Yong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Nanoengineered materials with advanced architectures are critical building blocks to modulate conventional material properties or amplify interface behavior for enhanced device performance. While several techniques exist for creating one dimensional heterostructures, electrospinning has emerged as a versatile, scalable, and cost-effective method to synthesize ultra-long nanofibers with controlled diameter (a few nanometres to several micrometres) and composition. In addition, different morphologies (e.g., nano-webs, beaded or smooth cylindrical fibers, and nanoribbons) and structures (e.g., core-.shell, hollow, branched, helical and porous structures) can be readily obtained by controlling different processing parameters. Although various nanofibers including polymers, carbon, ceramics and metals have been synthesized using direct electrospinning or through post-spinning processes, limited works were reported on the compound semiconducting nanofibers because of incompatibility of precursors. In this work, we combined electrospinning and galvanic displacement reaction to demonstrate cost-effective high throughput fabrication of ultra-long hollow semiconducting chalcogen and chalcogenide nanofibers. This procedure exploits electrospinning to fabricate ultra-long sacrificial nanofibers with controlled dimensions, morphology, and crystal structures, providing a large material database to tune electrode potentials, thereby imparting control over the composition and shape of the nanostructures that evolved during galvanic displacement reaction.

  • PDF

Electrospinning Technology for Novel Energy Conversion & Storage Materials

  • Jo, Seong-Mu;Kim, Dong-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Electrospinning has known to be very effective tool for production of versatile one-dimensional (1D) nanostructured materials such as nanofibers, nanorod, and nanotubes and for easily assembly to two-, three-dimensional(2D, 3D) nanostructures such as thin film, membrane, and nonwoven web, etc. We have studied on the electrospinning technology for novel energy storage and conversion materials such as advanced separator, dye sensitized solar cell, supercapacitor, etc. High heat-resistive nanofibrous membrane as a new separator for future lithium ion polymer battery was prepared by electrospinning of PVdF based composite solution. The novel nanofibrous composite nonwovens have tensile strength of above 50 MPa and modulus of above 1.3 GPa. The internal structure of the electrospun composite nanofiber with a diameter of few hundreds nanometer were composed of core-shell nanostructure. And also electrospun $TiO_2$ nanorod/nanosphere based dye-sensitized solar cells with high efficiency are successfully prepared. Some battery performance will be introduced.

  • PDF

Membrane Morphology: Phase Inversion to Electrospinning

  • Chanunpanich N.;Byun Hongsik;Kang Inn-Kyu
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.85-104
    • /
    • 2005
  • Recently, membrane can be prepared by two methods, phase inversion and electrospinning techniques. Phase inversion technique is a conventional but commercially preparation membrane. The most versatile of preparation in this technique is immersion of the cast film into nonsolvent bath, causing dense top layer with a finger-like pattern in the sub layer membrane. The membrane pore size getting from phase inversion is in the range of micro or submicrometer. As a result, it can be used as microfiltration and ultrafiltration applications. A new technique, electrospinning, is introduced for membrane preparation. Nonwoven nanofibrous mat or nanofibrous membrane is obtained. In this technique, electrostatic charge is introduced to the solution jet, causing a thin fiber with high surface area; hence it can be used in the applications where high surface area-to-volume or length-to-diameter ratios are required. Moreover, the pore size can be controlled by controlling the time of electrospinning. Hence, it can be used as a filter for filtering microparticles as well as nanoparticles.

Aluminum Oxide Nano-Rings Synthesized by Electrospinning Techniques

  • Jo, Jun-Mo;Park, Ju-Yeon;Go, Seong-Wi;Kim, Don;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.102-102
    • /
    • 2010
  • One or two-dimensional nanostructures such as nanowires or nanomats have been widely uses as building blocks for nanoscale electronic devices. Nanofiber is one of sub-category of nano structures, it is easy to make nano-sized fiber by electrospinning technique. Nanofiber has large surface area as compared with their volume, it could be widely applied to many areas easily. Electrospinning technique is easy to control their structures and morphology safely and cost-effectively. We made nano-rings as a model of one dimensional nanostructures by electrospinning technique. To our knowledge, there were no reports on the preparation and investigation of alumina nano-rings by electrospinning technique. In this study, aluminum oxide nano-rings were produced after electospinning and calcination. The synthesized aluminum oxide nano-rings were characterized by scanning electron microscopy (SEM) to identify the morphology and the diameter of the ring, X-ray diffraction (XRD) to verify the crystallinity of the aluminum oxide, and X-ray photoelectron spectroscopy (XPS) for investigation of the chemical nature of the synthesized nano-rings.

  • PDF

Fabrication of PVDF Structures by Near Field Electrospinning

  • Kim, Seong-Uk;Ji, Seung-Muk;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.423.1-423.1
    • /
    • 2016
  • Polyvinylidene fluoride (PVDF) has drawn much attention due to its many advantages. PVDF shows high mechanical strength and flexibility, thermal stability, and good piezoelectricity enabling its application to various fields such as sensors, actuators, and energy transducers. Further studies have been conducted on PVDF in the form of thin films. The thin films exhibit different ionic conductivity according to the number of pores within the film, letting these films to be applied as electrolytes or separators of batteries. Porous PVDF membranes are also easily processed, usually made by using electrospinning. However, a large portion of researches were conducted using PVDF membranes produced by far field electrospinning, which is not a well-controlled experimental method. In this paper, we use near field electrospinning (NFES) process for more controlled, small-scaled, mesh type PVDF structures of nano to micro fibers fabricated by controlling process parameters and investigate the properties of such membranous structures. These membranes vary according to geometrical shape, pore density, and fiber thickness. We then measured the mechanical strength and piezoelectric characteristic of the structures. With various geometries in the fiber structures and various scales in the fibers, these types of structures can potentially lead to broader applications for stretchable electronics and dielectric electro active polymers.

  • PDF