• Title/Summary/Keyword: element reduction

Search Result 1,801, Processing Time 0.034 seconds

ANALYSIS OF PRIVACY-PRESERVING ELEMENT REDUCTION OF A MULTISET

  • Seo, Jae-Hong;Yoon, Hyo-Jin;Lim, Seong-An;Cheon, Jung-Hee;Hong, Do-Won
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • The element reduction of a multiset S is to reduce the number of repetitions of an element in S by a predetermined number. Privacy-preserving element reduction of a multiset is an important tool in private computation over multisets. It can be used by itself or by combination with other private set operations. Recently, an efficient privacy-preserving element reduction method was proposed by Kissner and Song [7]. In this paper, we point out a mathematical flaw in their polynomial representation that is used for the element reduction protocol and provide its correction. Also we modify their over-threshold set-operation protocol, using an element reduction with the corrected representation, which is used to output the elements that appear over the predetermined threshold number of times in the multiset resulting from other privacy-preserving set operations.

Equivalent Coefficient Element Modelling for a Jointed Structure Using the Reduction of Flexibility and Mass Matrices (유연도행렬 및 질량관성행렬의 축약을 이용한 결합체결 구조부의 등가 계수행렬 요소 모델링)

  • Choi, Y.H.;Shin, J.H.;Chung, W.J.;Park, J.K.;Cho, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.655-660
    • /
    • 2000
  • This paper presents the construction of consistent coefficient matrix elements for jointed structures using the reduction of flexibility and mass matrices. The reduced flexibility coefficient matrix hat little structural complexity than Guyan's stiffness matrix reduction since the only element of the original matrix, corresponding to the selected nodal degrees of freedom, contributes. The proposed method was applied to building equivalent coefficient matrices for a clamp jointed structure in finite element modal analysis of a cantilevered beam. The theoretical analysis results were compared with those experimental modal analysis, Comparison of both shows good agreement each other.

  • PDF

A Study for Structural Damage Identification Method Using Genetic Algorithm (유전자 알고리즘을 이용한 구조물 손상 탐색기법에 관한 연구)

  • Woo, Ho-Kil;Choi, Byoung-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.80-87
    • /
    • 2007
  • In this paper, a method for identifying the location and extent of a damage in a structure using residual forces was presented. Element stiffness matrix reduction parameters in a finite element model were used to describe the damaged structure mathematically. The element stiffness matrix reduction parameters were determined by minimizing a global error derived from dynamic residual vectors, which were obtained by introducing a simulated experimental data into the eigenvalue problem. Genetic algorithm was used to get the solution set of element stiffness reduction parameters. The proposed scheme was verified using Euler-Bernoulli beam. The results were presented in the form of tables and charts.

Design and Fabrication of Optical Element for Speckle Reduction in Laser Projector (레이저 프로젝터의 스페클 저감을 위한 광학 소자 설계 및 제작)

  • Lee, Jae-Yong;Kim, Young-Joo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.2
    • /
    • pp.55-60
    • /
    • 2014
  • Laser projector has many advantages of high brightness, high resolution and small size, but the huge drawback of image degradation called speckle which generated by coherence of laser and roughness of surface interrupts their general use. There are many methods to reduce speckle pattern, but they need effective optical systems to realize display to the far field with huge volume. We designed speckle reduction element by using microlens with controlled curvature to reduce spatial coherence. Vibration element was also applied to reduce temporal coherence which considered response time of eye. Designed element was fabricated by simple reflow method and imprinting method. From the results, the fabricated element performed 48.33% of speckle reduction efficiency and 41.29% of optical efficiency with a single doublet lens.

Efficient Vibration Simulation Using Model Order Reduction (모델차수축소법을 이용한 효율적인 진동해석)

  • Han Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.310-317
    • /
    • 2006
  • Currently most practical vibration and structural problems in automotive suspensions require the use of the finite element method to obtain their structural responses. When the finite element model has a very large number of degrees of freedom the harmonic and dynamic analyses are computationally too expensive to repeat within a feasible design process time. To alleviate the computational difficulty, this paper presents a moment-matching based model order reduction (MOR) which reduces the number of degrees of freedom of the original finite element model and speeds up the necessary simulations with the reduced-size models. The moment-matching model reduction via the Arnoldi process is performed directly to ANSYS finite element models by software mor4ansys. Among automotive suspension components, a knuckle is taken as an example to demonstrate the advantages of this approach for vibration simulation. The frequency and transient dynamic responses by the MOR are compared with those by the mode superposition method.

Comparative study between Finite Element Method and Limit Equilibrium Method on Slope Stability Analysis (사면안정해석에 있어서의 유한요소법과 한계평형법의 비교)

  • 이동엽;유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.483-490
    • /
    • 2002
  • This paper presents the results of a comparative study between FEM and LEM on slope stability analysis. For validation, factors of safety were compared between FEM and LEM. The results from the two methods were in good agreement suggesting that the FEM with the shear strength reduction method can be effectively used on slope stability analyses. A series of analysis were then performed using the FEM for various constitutive laws, slope angles, flow rules, and the finite element discretizations. Among the findings, the finite element method in conjunction with the shear strength reduction method can provide reasonable results in terms of factor of safety. Also revealed is that the results of FEM can be significantly affected by the way in which the type of constitutive law and flow rule are selected.

  • PDF

Finite Element Analysis of Slab Deformation under the Width Reduction in Hot Strip Mill (열간압연 폭압하시 슬래브 변형거동의 유한요소해석)

  • 천명식;정제숙;안익태;문영훈
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.668-674
    • /
    • 2003
  • Rigid-plastic finite element analyses on the deformation of slabs at various width reductions have been performed. By using commercial finite element code, dog-bone profile, crop profile and the longitudinal width profile after edging and Horizontal rolling have been analysed. The deformation behavior of slab for the heavy edger mill has also been compared with that for the sizing press. From the deformation analyses, it was found that the sizing press-horizontal rolling method is more efficient in width reduction than that of heavy edger mill-horizontal rolling. The results of finite element analyses fer the deformation of slab were well confirmed by the actual operational data. It was found that the amount of width variation after sizing and rolling is about 5∼10mm.

A Study on Reduction Distribution in Tube Drawing Process (튜브 인발공정시 압하량 배분에 관한 연구)

  • Lee D. H.;Kim D. W.;Kim D. H.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.35-38
    • /
    • 2004
  • In general, tube drawing process is composed of two steps, so called first drawing and second drawing. Drawing cracks are mainly occurred during the 2nd drawing process due to the improper drawing process. In order to analyze the reduction distribution in successive two-step drawing process, tube drawing process was simulated by finite element method. From the finite element analysis, the balance between first and second reduction is proved to be important factor to prevent drawing cracks. Hence the numerical expression was developed for tube drawing process to distribute even strain and criteria curves that can predict the safe drawing region were also proposed using this numerical formula.

  • PDF

Ultimate strength of stiffened plates with pitting corrosion

  • Rahbar-Ranji, Ahmad;Niamir, Nabi;Zarookian, Arvin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.509-525
    • /
    • 2015
  • Predicting residual strength of corroded plates is of crucial importance for service life estimation of aged structures. A series of nonlinear finite element method is employed for ultimate strength analysis of stiffened plates with pitting corrosion. Influential parameters, including plate thickness, type and size of stiffeners, pit depth and degree of pitting are varied and more than 208 finite element models are analyzed. It is found that ultimate strength is reduced by increasing pit depth to thickness ratio. Thin and intermediate plates have minimum and maximum reduction of ultimate strength with stronger stiffeners, respectively. In weak stiffener, reduction of ultimate strength in thin and intermediate plates depends on DOP. Reduction of ultimate strength in thick plates depends on thickness of plate and DOP. For intermediate plates, reduction for all stiffeners regardless of shape and size are the same.

Dynamic Analysis of Rotating Bodies Using Model Order Reduction (모델차수축소기법을 이용한 회전체의 동해석)

  • Han, Jeong-Sam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.443-444
    • /
    • 2011
  • This paper discusses a model order reduction for large order rotor dynamics systems results from the finite element discretization. Typical rotor systems consist of a rotor, built-on parts, and a support system, and require prudent consideration in their dynamic analysis models because they include unsymmetric stiffness, localized nonproportional damping and frequency dependent gyroscopic effects. When the finite element model has a very large number of degrees of freedom because of complex geometry, repeated dynamic analyses to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to finish within a practical design cycle. In this paper, the Krylov-based model order reduction via moment matching significantly speeds up the dynamic analyses necessary to check eigenvalues and critical speeds of a Nelson-Vaugh rotor system. With this approach the dynamic simulation is efficiently repeated via a reduced system by changing a running rotational speed because it can be preserved as a parameter in the process of model reduction. The Campbell diagram by the reduced system shows very good agreement with that of the original system. A 3-D finite element model of the Nelson-Vaugh rotor system is taken as a numerical example to demonstrate the advantages of this model reduction for rotor dynamic simulation.

  • PDF