• Title/Summary/Keyword: elevated guideway

Search Result 20, Processing Time 0.027 seconds

Emergency Evacuation Scenario Study of Urban Metro Vehicle Running on Elevated Guideway (도시철도차량의 고가선로 비상대피 시나리오 분석)

  • Kim, Young-Sang;Maeng, Hee-Young;Wang, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2012
  • There have been recently introduced new types of urban metro vehicles called LRT (Light Rail Transit) running on elevated guideway such as Uijeongbu VAL(which stands for V$\acute{e}$hicule Automatique L$\acute{e}$ger: Automatic Light Rail Vehicle) system, Yong-In LIM(Linear Induction Motor) system, Incheon international airport MAGLEV(Magnetic Levitated Vehicle) system and Daegu monorail system. Most of accidents by the vehicles are bound to happen on elevated guideway. Therefore, it is of vital importance to analyze hazards related to vehicles running on elevated guideway and study emergency evacuation scenarios applicable in case of accidents on elevated guideway so as to secure the safety of the new types of urban metro vehicles. In this study, FTA(Fault Tree Analysis) model was developed to identify all possible hazards, and all possible evacuation scenarios were studied. It was also confirmed that each hazard can be corresponded to one or more evacuation scenarios. This result shows that passengers can be evacuated according to one of the scenarios identified in this study in case of an accident of "Train Stranded on Elevated Guideway".

Simulation of Dynamic Interaction Between Maglev and Guideway using FEM (FEM을 이용한 자기부상열차/궤도 동적 상호작용 시뮬레이션)

  • Han Hyung-Suk;Kim Dong-Sung;Lee Jong-Min;Kang Heung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.363-368
    • /
    • 2004
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated guideways comprised of steel, aluminum and concrete. Therefore, an analysis of the dynamic interaction between the Maglev vehicle and the guideway is needed in the design of the critical speed, ride, controller design and weight reduction of the guideway. This study introduces a dynamic interaction simulation technique that applies FEM. The proposed method uses FEM to model the elevated guideway and the Maglev vehicle, which is different from conventional studies. Because the proposed method uses FEM, it is useful to calculate the deformation of the elevated guideway, the dynamic stress, and the motion of the vehicle. By applying the proposed method to an urban transit Maglev vehicle, UTM01, the dynamic response is simulated according to velocity increase and can be reviewed again. From the result of the study, we concluded that FEM simulation of the dynamic interaction between the maglev vehicle and the guideway is possible.

  • PDF

Coupling Model of the Maglev Vehicle/Guideway (자기부상열차/가이드웨이 연성 모델링 연구)

  • Han, Hyung-Suk;Sung, Ho-Kyung;Kim, Young-Joong;Kim, Byung-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.243-250
    • /
    • 2007
  • In general the Maglev vehicle is run over the elevated track called guideway. Since the guideway is elevated, the flexibility of the guideway has an effect on the dynamic responses of a vehicle such as its stability and ride quality. To improve the running performance of the Maglev vehicle and design a cost effective guideway using the dynamic analysis, the dynamic analysis of the system requires the coupling model of the Maglev vehicle and guideway. A coupling model based on multibody dynamics is proposed and programmed. With the program, the UTM01, a low speed Maglev vehicle, is analyzed and discussed.

Modeling of the Maglev Vehicle Running over the Elevated Guideway Using Flexible Multibody Dynamics (유연다물체 동역학을 이용한 자기부상열차 동역학 모델링 연구)

  • Lee, Jong-Min;Kim, Young-Joong;Kim, Kuk-Jin;Kim, Dong-Sung;Kim, Sook-Hee;Han, Hyung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.792-797
    • /
    • 2006
  • In general, the Maglev vehicle is ran over the elevated guideway consisted of steel or concrete structure. Since the running behaviour of the vehicle is affected by the flexibility of the guideway, the consideration of the flexibility of guideway is needed for evaluation of dynamics of both the vehicle and guideway. A new technique based on flexible multibody dynamics is proposed to model the Maglev vehicle, levitation controller, and guideway into a coupled model. To verify the technique, an urban Maglev vehicle is analyzed using the technique and discussions are carried out.

Modeling of the Maglev Vehicle Running over an elevated Guideway Using Flexible Multi-body Dynamics Based on the Model Superposition Method (모드중첩법을 이용한 자기부상열차/유연궤도 동적 모델링 연구)

  • Han, Hyung-Suk;Lee, Jong-Min;Kim, Young-Joong;Kim, Dong-Seong;Kim, Sook-Hee;Lee, Jae-Ik
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.229-238
    • /
    • 2006
  • In general, the Maglev vehicle is run over an elevated guideway consisting of steel or concrete structure. Since the running behavior of the vehicle is affected by the flexibility of the guideway, the consideration of the flexibility of guideway is needed for evaluating the dynamics of both the vehicle and guideway. A new method based on flexible multibody dynamics is proposed to model the Maglew vehicle. This method combines the levitation controller, vehicle, and guideway into a coupled model To verify the method, an urban transit is analyzed using the method and discussions are carried out.

  • PDF

Simulation of a Maglev Vehicle Running on the Flexible Guideway (유연궤도를 고려한 자기부상열차 주행 시뮬레이션)

  • Han Hyung-Suk;Kim Young-Joong;Shin Byung-Chun;Kwon Jeong-Il
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.499-503
    • /
    • 2006
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated flexible guideways comprised of steel, aluminum and concrete. Therefore, an analysis of the dynamic interaction between the Maglev vehicle and the flexible guideway is needed in the design of the critical speed, ride, controller design and weight reduction of the vehicle. This study introduces a dynamic interaction simulation technique that applies structural dynamics. Because the proposed method uses detailed 3D FE models, it is useful to analyze the deformation of the elevated flexible guideway, the dynamic stress, and the motion of the vehicle. By applying the proposed method to an urban transit Maglev vehicle, UTM01, the dynamic response is simulated and validated. From the result of the study, we concluded that the simulation of dynamic interaction between the Maglev vehicle and the flexible guideway is possible and a potential of using computational mechanics.

Simulation of the Dynamic Interaction Between Maglev and Guideway using a Flexible Beam Model (유연보 모델에 의한 자기부상열차/궤도 동적 상호작용 시뮬레이션)

  • Han Hyung-Suk;Lee Jong-Min;Kim Dong-Sung;Kim Bong-Sup
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.357-362
    • /
    • 2004
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated guideways comprised of steel, aluminum and concrete. Therefore, an analysis .of the dynamic interaction between the Maglev vehicle and the guideway is needed in the design of the critical speed, ride, controller design and weight reduction of the guideway. This study proposes a dynamic interaction simulation technique using a flexible beam model based on multi-body dynamics. The vehicle and the elevated guideway are represented as a multi-body dynamics model and a two-dimensional flexible beam, respectively. The proposed model was applied to an urban transit Maglev vehicle, UTM01, which is undergoing test drive. As a result of the proposed method, we concluded that it is possible to analyze the dynamic interaction between the Maglev vehicle and the guideway.

  • PDF

Air Gap Change of a Maglev Vehicle at the Moment a Linear Induction Motor Runs (자기부상열차 고가 선로 구조특성에 따른 부상공극 응답)

  • Shin, Hyeon-Jae;Han, Hyung-Suk;Lee, Jong-Min;Rho, Kyu-Sok
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1213-1217
    • /
    • 2009
  • The air gap between electromagnet and guiderail in an EMS-type Maglev vehicle must be maintained within an allowable deviation by controlling the voltage on the magnet. In this type of vehicle, the air gap response is strongly dependent on the structural characteristics of the elevated guideway, such as stiffness, damping and mass. For this reason, the dynamic interaction between the vehicle with electromagnets and the elevated guideway must be understood to ensure safe running. The response of the air gap to guideway characteristics such as mass, stiffness, and damping are analyzed through vehicle tests over different guideways. Through such tests, the design requirements for Maglev vehicles and elevated guideways can be established, improving levitation stability.

  • PDF

Simulation of the Maglev Running on the Flexible Guideway (궤도의 유연성을 고려한 자기부상열차 주행 시뮬레이션)

  • Han Hyung-Suk;Kim Dong-Sung;Lee Jong-Min
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.113-118
    • /
    • 2005
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated flexible guideways comprised of steel, aluminum and concrete. Therefore. an analysis of the dynamic interaction between the Maglev vehicle and the flexible guideway is needed in the design of the critical speed, ride, controler design and weight reduction of the vehicle. This study introduces a dynamic interaction simulation technique that applies structural dynamics. Because the proposed method uses FEM, it is useful to calculate the deformation of the elevated flexible guideway, the dynamic stress, and the motion of the vehicle. By applying the proposed method to an urban transit Maglev vehicle, UTM01, the dynamic response is simulated and validated. From the result of the study, we concluded, that the dynamic interaction between the maglev vehicle and the flexible guideway is possible.

  • PDF

Dynamic Analysis of the UTM01 According to Types of Guideway (자기부상열차 UTM01의 궤도 형상에 따른 동특성 해석)

  • Jung, Jung-Hoon;Han, Hyung-Suk;Sung, Ho-Kyung;Hur, Young-Chul;Kim, Byung-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.219-227
    • /
    • 2006
  • Since the Maglew ehicle is run over an elevated guideway, the types of guideways affect the running behavior of the vehicle and guideway. The design of a guideway has a strong effect on the costs of constructing guideways, the optimized design of a guideway satisfying running performance is needed for the commercialization of the Maglew vehicle. With an analysis program for dynamics of Maglew vehicles, the dynamic responses of the UTM01 and guideway are numerically analyzed according to types of guideway.

  • PDF