• Title/Summary/Keyword: enantiomeric composition

Search Result 12, Processing Time 0.031 seconds

Analysis of Enantiomeric Composition of Chiral Flavor Components from Dried Ginger (Zingiber afficinale Roscoe) (건생강에 함유된 키랄성 향기성분의 이성질체 조성 분석)

  • Seo, Hye-Young;No, Ki-Mi;Shim, Seong-Lye;Ryu, Keun-Young;Han, Kyu-Jae;Gyawali, Rajendra;Kim, Kyong-Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.7
    • /
    • pp.874-880
    • /
    • 2006
  • The volatile compounds of Zingiber officinale Roscoe were extracted by simultaneous steam distillation and extraction (SDE) method and identified with gas chromatigraphy/mass spectrometer (GC/MS) analysis. Enantiomeric compositions of chiral compounds were determined by multidimensional gas chromatography/mass spectrometer (MDGC/MS). A total of 57 compounds were indentified and quantified, including zingiberene, ${\beta}-sesquiphellandrene$, ${\beta}-bisabolene$, $(E,E)-{\alpha}-farnesene$ and ${\alpha}-curcumene$. Among them, zingiberene (38.41%) was founds as the predominantly abundant component. ${\alpha}-Pinene$ and nerolidol in dried ginger were detected by high enantiomeric purity (>96%) for (S)-form, and ${\beta}-pinene$ was detected only (R)-form. The enantiomeric composition of ${\alpha}-terpineol$ revealed 72.0% for (R)-form, and linalool and 4-terpineol showed mixtures of both enantiomers. (S)-Enantiomer was the major enantiomer of limonene having enatiomeric excess of 17.2%. Hence the enantiomeric composition of these compounds can be used as parameter for authenticty control of Zingiber officinale.

Analysis of Volatile Compounds and Enantiomeric Separation of Chiral Compounds of Dried Sancho (Zanthoxylum schinifolium Siebold & Zucc)

  • Seo, Hye-Young;Shim, Sung-Lye;Ryu, Keun-Young;Jung, Min-Seok;Hwang, In-Min;Shin, Dong-Bin;Kwon, Joong-Ho;Schreier, Peter;Kim, Kyong-Su
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.18-24
    • /
    • 2009
  • The volatile compounds of dried sancho (Zanthoxylum schinifolium), an aromatic plant were extracted by simultaneous distillation and extraction (SDE) method and identified by gas chromatograph-mass spectrometry (GC-MS). Selected chiral constituents of sancho oil were characterized by enantiodifferentiation using multidimensional gas chromatograph (MDGC)-MS. A total of 57 compounds were identified and quantified, and the major compounds were identified estragole, nonanoic acid, octanoic acid, $\beta$-phellandrenene, and limonene. Among them, estragol (63.9%) was found as the predominantly abundant component of sancho. $\alpha$-pinene and nerolidol, and $\beta$-pinene and linalool were determined to be enantiomerically pure (100%) for their (S)-form and (R)-form, respectively. The enantiomeric composition of limonene in sancho revealed 83.9% purity for the (S)-enantiomer, whereas (E)- and (Z)-rose oxides showed mixtures of both enantiomers. The enantiomeric excess (%) for citronellal was 22.6% with the (R)-enantiomer as major enantiomer. The enantiomeric composition of these compounds can be used as parameter for authenticity control of sancho.

Enantioseparation of Flurbiprofen and Ketoprofen in Patches and in Urine Excretions by Achiral Gas Chromatography

  • Paik, Man-Jeong;Nguyen, Duc-Toan;Kim , Kyoung-Rae
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1295-1301
    • /
    • 2004
  • The enantiomeric composition tests on flurbiprofen and ketoprofen present in patch products and in urine excretions following patch applications were performed as diastereomeric (R)-(+)- 1-phenylethylamides by achiral gas chromatography and by gas chromatography-mass spectrometry in selected ion monitoring mode. The method for determination of (R)- and (S)-enantiomers in the range from 0.1 to 5.0 ${\mu}$g was linear (r ${\ge}$ 0.9996) with acceptable precision (% RSD ${\le}$5.2) and accuracy (% RE = 0.6 ~ -2.4). The enantiomeric compositions of flurbiprofen in one patch product and of ketoprofen in five different products were identified to be racemic with relatively good precision (${\le}$ 6.4%). The urinary excretion level of (R)-flurbiprofen was two times higher than its antipode, while the comparable excretion levels of (R)- and (S)-enantiomers for ketoprofen were observed.

Synthesis of solid enantioselective macromer of trimesic acid for the enantiomeric separation of chiral alcohols

  • Ingole, Pravin G.;Bajaj, Hari C.;Singh, Kripal
    • Advances in materials Research
    • /
    • v.2 no.1
    • /
    • pp.51-64
    • /
    • 2013
  • Enantioselective macromer of trimesic acid was prepared using S(-) menthol with trimesoyl chloride on polyimide (PI) ultrafiltration membrane. The chemical composition of macromer as well as polyimide ultrafiltration membrane was determined by ATR-FTIR Spectroscopy. The optical resolution of chiral alcohols was performed in pressure driven process. The effect of monomer solutions concentration, effect of air-drying time of S(-) menthol solution, effect of reaction time, effect of operating pressure, effect of feed concentration of racemate on the performance of macromer was studied. The synthesised material exhibits separation of chiral alcohols (menthol ~23% and sobrelol ~21%).

Chiral Separation of Basic Compounds on Sulfated β-Cyclodextrin-Coated Zirconia Monolith by Capillary Electrochromatography

  • Hong, Jong-Seong;Park, Jung Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1809-1813
    • /
    • 2013
  • Sulfated ${\beta}$-cyclodextrin (SCD)-coated zirconia monolith was used as the chiral stationary phase in capillary electrochromatography for enantiomeric separation of basic chiral compounds. SCD adsorbed on the zirconia surface provided a stable chiral stationary phase in reversed-phase eluents. Retention, chiral selectivity and resolution of a set of six basic chiral compounds were measured in eluents of varying pH, composition of methanol and buffer. Optimum mobile phase condition for the separation of the compounds was found to be methanol content of 30%, buffer concentration of 30 mM and pH of 4.0.

Coupled Column Chromatography in Chiral Separation of Salmeterol

  • Kim, Kyeong-Ho;Yun, Hyeong-Won;Kim, Hyun-Ju;Park, Hyun-Ji;Choi, Pok-Wha
    • Archives of Pharmacal Research
    • /
    • v.21 no.2
    • /
    • pp.212-216
    • /
    • 1998
  • A coupled achiral-chiral high-performance liquid chromatographic system has been developed for the determination of the enantiomers of salmeterol, S-(+)-salmeterol and R-(-)-salmeterol in urine. THe salmeterol was separated from the interfering components in urine and quantified on the silica column, and the enantiomeric composition was determined on a Sumichiral OA-4700 chiral stationary phase. The two columns were connected by a switching valve equipped with a silica precolumn. The two columns wer connected by a switching valve equipped with a silica precolumn. The precolumn was used to concentrate the salmeterol in the eluent from the achiral column before backflushing onto the chiral phase. The coupled system was validated.

  • PDF

Resolution of Tocainide and Its Analogues on Liquid Chromatographic Chiral Stationary Phases Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid

  • Hyun, Myung-Ho;Min, Hye-Jung;Cho, Yoon-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.911-915
    • /
    • 2003
  • Two liquid chromatographic chiral stationary phases (CSPs) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid were successfully applied in the resolution of racemic tocainide and its analogues. In the resolution of tocainide, especially, the CSP containing N-CH₃ amide tethering groups was quite effective, showing clear baseline resolution (RS: 2.66) with reasonable enantioselectivity ( a: 1.25). Consequently, the CSP containing N-CH₃ amide tethering groups is expected to be useful to monitor the enantiomeric composition of tocainide in clinical samples. In addition, the chromatographic behaviors for the resolution of tocainide and its analogues on the two CSPs were found controllable by varying the content and the type of organic and acidic modifiers in aqueous mobile phase.

Studies of Degradation Behavior of Stereochemical Poly(lactide) Blend Fibers Prepared by Electrospinning (전기방사에 의한 이성질 폴리락타이드 블렌드의 섬유제조와 분해거동에 관한 연구)

  • Jang, Ei-Sup;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.473-481
    • /
    • 2014
  • Poly(lactide)s(PLA) is an attractive material to solve the problem of waste plastic accumulation in nature because of its biodegradability. The lactide exists in three stereoisomeric configurations: L-lactide, D-lactide, and meso-lactide. PLA stereocomplexes, formed by the mixing of two enantiomers, poly(L-lactide)(PLLA) and poly(D-lactide)(PDLA), have many favorable characteristics because the stereocomplex showed $50^{\circ}C$ higher melting point than each enantiomeric polymer and the resistance toward degradation increased. In this study, we investigated the influence of the composition and the optical purity of each component on the formation of stereocomplexes. Also, the nanofibers of stereochemical PLA and their blends were prepared by electrospinning method. The properties of the obtained fibers were analyzed by differential scanning calorimetry and scanning electron microscopy. The results showed that a degree of stereocomplex was controlled by change of optical purity of each component. The enzymatic degradation of the fibers were strongly dependent on the stereocomplex.

Polyacrylamide Gel Immobilization of Porcine Liver Esterase for the Enantioselective Production of Levofloxacin

  • Lee, Sang-Yoon;Min, Byung-Hyuk;Song, Seong-Won;Oh, Sun-Young;Lim, Sang-Min;Kim, Sang-Lin;Kim, Dong-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.179-182
    • /
    • 2001
  • Porcine liver esterase was immobilized in polyacrylamide gel for the enantioselective production of levofloxacin from ofloxacin butyl ester. The initial activity of immobilized esterase was found to be significantly affected by the polyacrylamide gel composition. The optimum concentrations of monomer and crosslinker were determined to be 20% and 8.3%, respectively. The activity of immobilized esterase was 55.4% compared to a free enzyme. Enantiomeric excess was maintained at 60%, almost the same level as that of free enzyme. In addition, the immobilized esterase could be used repeatedly up to 10 times without experiencing any severe loss of activity and enantioselectivity.

  • PDF

Chiral Separation of Lactic Acid in Culture Media and Cells of Lactobacillus delbrueckii subsp. lactis as O-Pentafluoropropionylated (S)-(+)-3-Methyl-2-Butyl Ester by Achiral Gas Chromatography-Mass Spectrometry

  • Paik, Man-Jeong;Nguyen, Duc-Toan;Yoon, Jae-Hwan;Chae, Han-Seung;Kim, Kyoung-Rae;Lee, Gwang;Lee, Pyung-Cheon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2418-2422
    • /
    • 2011
  • The enantiomeric separation of lactic acid for its absolute configuration has become important task for understanding its biological origin and metabolic process involved in the formation of lactic acid. It involves the conversion of enantiomers as diastereomeric O-pentafluoropropionylated (S)-(+)-3-methyl-2-butyl ester and the direct separation by gas chromatography-mass spectrometry on a achiral capillary column. The (R)- and (S)-lactic acids were completely separated with a high resolution of 1.9. The newly developed method showed good linearity (r ${\geq}$ 0.999), precision (% relative standard deviation = 3.4-6.2), and accuracy (% relative error = -7.7-1.4) with the detection limit of 0.011 ${\mu}g/mL$. When the method was applied to determine the absolute configuration of lactic acid in Lactobacillus delbrueckii subsp. lactis 304 (LAB 304), the composition (%) of (R)-lactic acid in the cell pellet and in the culture medium were $89.0{\pm}0.1$ and $78.2{\pm}0.4$, respectively. Thus, it was verified that the present method is useful for the identification and composition test of lactic enantiomers in microorganisms.