• Title/Summary/Keyword: endosulfan

Search Result 178, Processing Time 0.034 seconds

Dechlorination of Organochlorine Insecticide, Endosulfan by Zerovalent Iron (Zerovalent Iron에 의한 유기염소계 살충제 Endosulfan의 탈염소화)

  • Shin, Hyun-Su;Kim, Taek-Kyum;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.202-208
    • /
    • 2009
  • The dechlorination of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) and its metabolite, endosulfan sulfate via reaction with zerovalent iron under various pH conditions was studied using aqueous solution. The reaction products, which were probably produced from endosulfan and endosulfan sulfate by ZVI were identified by GC-MS. The lower the pH of reaction solution, the higher the transformation rate of endosulfan and endosulfan sulfate. The transformation rates of endosulfan and endosulfan sulfate in pH 3.0 by ZVI were 28% and 90% but those of endosulfan and endosulfan sulfate in mixture solution of water/acetone were 65% and 92%, respectively. The pH of reaction solution after ZVI treatment was increased to pH 10. Endosulfan was hydrolyzed at pH 10 but endosulfan sulfate was not hydrolyzed. Two unknown peaks were produced from endosulfan sulfate by treatment of ZVI. As a result of GC-MS analysis, unknown peaks were guessed to be structural isomer substituted hydrogen for chlorine.

in Vitro Metabolism Study of ${\alpha}$-Endosulfan with Microsomal Cytochrome P-450 Monooxygenase (생쥐에서 Cytochrome P-450 효소계에 의한 ${\alpha}$-Endosulfan의 시험관내 대사시험)

  • Kim, In-Seon;Lee, Kang-Bong;Shim, Jae-Han;Suh, Yong-Tack
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.463-467
    • /
    • 1995
  • In vitro metabolism study of ${\alpha}$-endosulfan by liver and kidney microsomal cytochrome P-450 monooxygenase system of the mouse(Balb/C) was performed. ${\alpha}$-Endosulfan was metabolized to endosulfan lactone(EL), endosulfan hydroxyether(EHE), endosulfan alcohol(EA), endosulfan sulfate(ES), endosulfan ether(EE) and ${\beta}$-endosulfan(${\beta}$-E). The main metabolites of ${\alpha}$-endosulfan were EL(13.2%) and EA(11.5%) in liver microsome and EA(17.4%) md EHE(19.3%) in kidney microsome. The $^{14}C$-activity of organic extractable fraction and water soluble fraction were 63.4% and 31.7% in liver micosome incubates respectively. The water soluble metabolites were EA(83.9%), EHE(4.5%) and ES(2.3). Piperonyl butoxide treatment inhibited the formation of EE by 86%, EA by 92% and EHE, EL and ES were barely formed.

  • PDF

Characterization of Organochlorine Insecticide Endosulfan-Degrading Bacterium Isolated from Seaside Sediment (갯벌에서 분리한 유기염소계 살충제 Endosulfan 분해 세균의 특성)

  • Park, Mi-Eun;Kim, Young-Mog;Chung, Yong-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.3
    • /
    • pp.207-215
    • /
    • 2011
  • An endosulfan degrading bacterial strain, K-1321, was isolated by endosulfan-enrichment culture from a seaside sediment collected at Dadaepo Beach, Busan, Korea. The strain was identified as a Serratia sp. based on the results of morphological, biochemical and 16S rDNA homology analyses. Serratia sp. K-1321 was able to completely degrade 50 ppm endosulfan in culture media and soil within 6 weeks at $25^{\circ}C$. GC/MS analysis revealed that endosulfan diol was an intermediate of the bacterial endosulfan degradation. Considering the above results, we concluded that Serratia sp. K-1321 utilized endosulfan as a carbon source and metabolized endosulfan via a less toxic pathway, such as the formation of endosulfan diol as an intermediate.

In vivo Metabolism of Endosulfan in Carp (cyprinus carpio L.) (In vivo 시험에 의한 잉어(cyprinus carpio L.)체내 endosulfan의 대사)

  • Lee, K.B.;Shim, J.H.;Suh, Y.T.
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.194-202
    • /
    • 1994
  • To study the metabolism and absorption of endosulfan in carp, $^{14}C-{\alpha}-endosulfan$ was treated with the $LC_{10}$ concentration $(4.5\;{\mu}g/L)$. In an in vivo test, endosulfan was metabolized $(65{\sim}80%)$ in tissues and endosulfan ether, endosulfan alcohol, endosulfan ${\alpha}-hydroxyether$, and endosulfan lactone were identified, indicating that those are the main metabolites of detoxification in carp. The maximum levels of $^{14}C-endosulfan$ in the head, muscle, and gut occurred after 8 hr exposure. However, the maxima reached in the liver and kidneys after 30 min and 4 hr, respectively. Radioactivity in the tissue decreased rapidly 8 hr after treatment. The total amount of $^{14}C-endosulfan$ recovered in the liver, kidneys and gut of fish was about $80{\sim}90%$ during the 8 hr treatment. The non-extractable radioactivity increased after 8 hr exposure $(27{\sim}31%)$. Endosulfan sulfate, the main degradation product in plant and mouse, was not detected during the test interval from tissues of the carp.

  • PDF

Toxicity Evaluation of Organochloride Pesticide, Endosulfan and its Metabolites Using Microalgae (미세조류를 이용한 유기염소계 농약 Endosulfan 및 Endosulfan 분해산물의 독성평가)

  • Sohn, Ho-Yong;Kum, Eun-Joo;Kim, Jong-Sik;Lee, Jung-Bok;Kwon, Gi-Seok
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.4
    • /
    • pp.357-362
    • /
    • 2006
  • A growth inhibition assay using Chlorella sp. AG 10002 based on the OECD 201 standard test procedure was applied to the toxicity testing of endosulfan and its reported metabolites. Comparison of dry cell weight, optical density (OD) at 680 nm, and chlorophyll a concentration indicated that optical density at 680 nm of culture broth is convenient, rapid, and accurate method for cell growth. In this microalgae system, the $IC_{50}$ values of endosulfan, endosulfan sulfate, endosulfan lactone, and endosulfan ether were determined as 9.45, 18.8, 18.2 and 37.5 mg/L, respectively. In a while, endosulfan diol did not show a significant toxicity up to 50 mg/L. Since endosulfan is liable at acidic or alkaline conditions, treatment of endosulfan in pH 3, 4, and 11 for 3 days resulted in reduced toxicity, as expected. These results suggested that the microalgae system is useful to evaluate various toxic chemicals and provide a new notion for bioremediation of endosulfan in aqueous systems.

Metabolism of $^{14}C-{\alpha}-Endosulfan$ in Mouse in vivo (생쥐 체내에서 $^{14}C-{\alpha}-Endosulfan$의 대사)

  • Kim, In-Seon;Lee, Kang-Bong;Shim, Jae-Han;Suh, Yong-Tack
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.70-76
    • /
    • 1996
  • Absorption, distribution, excretion and metabolism of $^{14}C-{\alpha}-Endosulfan$[1,4,5,6,7,7-hexachloro-8,9,10-=trinorborn-5-en 2,3-ylenebismethylene]sulfite) were studied in male mouse(Balb/c) after single intraperitoneal treatment as the dose level of 7.5 mg/kg body weights. After treatment of $^{14}C-{\alpha}-endosulfan$, the radioactivity was rapidly excreted into the urine(63.9 %) within 4 days, thereafter the excretion ratio was constant. Radioactivity levels in the tissues was reached maximum 0.5 hr in heart, 2 hrs in liver and kidney after the treatment, then decreased with time. Endosulfan was metabolized to ${\beta}-endosulfan({\beta}-E)$, endosulfan ether(EE), endosulfan sulfate(ES), and endosulfan alcohol(EA). The main metabolites were EA(13.25 %) in liver and endosulfan hydroxyether(EHE)(19.37 %) in kidney. The urinary metabolites were EA(43.21 %), ES(4.78 %), ${\beta}-E$(7.21 %), EE(3.72 %) and EHE(18.04 %).

  • PDF

Effect of soil organic matter content on plant uptake factor of ginseng for endosulfan (토양유기물 함량이 인삼근의 endosulfan 흡수이행에 미치는 영향)

  • Oh, Kyeong-Yeol;Choi, Geun-Hyoung;Bae, Ji-Yeon;Lee, Deuk-Yeong;Lee, Sung-Woo;Kim, Jin-Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.401-406
    • /
    • 2020
  • The plant uptake of endosulfan, a new persistent organic pollutants from soil environment was investigated on ginseng through the field survey in Korea. The endosulfan residues in soil for this survey were ranged on 0.013-0.136 mg kg-1. The plant uptake factor (PUF) for endosulfan in ginseng was 0.243-1.708 and the highest PUF was found on 3-year-old ginseng. The PUF for endosulfan decreased in the longer cultivation period and it might be caused by the dilution effect of ginseng growth. In addition, the soil organic matter (SOM) content affected on the PUF negatively and Pearson correlation coefficient (r) between SOM and PUF was -0.7812 (p <0.05). Thus, higher SOM would positively affect to reduce the endosulfan residue in ginseng root.

Radiation-induced Degradation and Immune Toxicity Reduction of Endosulfan (감마선 조사에 의한 endosulfan의 면역독성 저감)

  • Kim, Hyun-Joo;Kim, Tae-Hoon;Ham, Jun-Sang;Kim, Kee-Hyuk;Jo, Cheo-Run
    • Food Science and Preservation
    • /
    • v.19 no.3
    • /
    • pp.451-454
    • /
    • 2012
  • Endosulfan is an organochlorine pesticide that is widely used throughout the world for higher agricultural production. Its extreme toxicity, however, has caused health and environment concerns that have led to an interest in detoxification. In this study, the radiolytic degradation of endosulfan was investigated. Endosulfan in methanol solution (100 ppm) was irradiated at 0, 10, 30, and 50 kGy, and subsequent changes in immune toxicity and degradation of endosulfan were observed. The concentration of endosulfan that was used in this experiment did not affect the cell proliferation. The irradiation of endosulfan decreased the production of NO, indicating a decrease in the immune toxicity of endosulfan by irradiation. The concentration of endosulfan was significantly reduced by irradiation in a dose-dependent manner. The results suggest that gamma irradiation can degrade endosulfan and can reduce its immune toxicity.

In vivo Metabolism of Endosulfan in Carp (Cyprinus carpio) (In vivo 시험에 의한 잉어체내 $^{14}C-endosulfan$의 대사)

  • Lee, K.B.;Shim, J.H.;Suh, Y.T.
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.203-209
    • /
    • 1994
  • When $^{14}C-{\alpha}-endosulfan$ was incubated with carp liver, kidney and gut preparations, it was metabolized to water soluble and organosoluble metabolites. In an in vitro test, endosulfan was converted to endosulfan ${\alpha}-hydroxyether$ (EHE), endosulfan alcohol (EA) and endosulfan ether (EE). The addition of NADPH resulted in rapid conversion of endosulfan to the metabolites in 105,000 g soluble fraction and microsomes. However, the rate of metabolism of endosulfan in liver, kidney and gut supplemented with NADPH as a cofactor was higher in the 105,000 g soluble fraction than that in the microsomes of carp under incubation conditions. The enzymes probably involved in the metabolism of endosulfan include the glutathione S-transferase (GST) and the mixed function oxidases (MFO), based on the evidence that addition of either GSH or NADPH increased the degradation of endosulfan.

  • PDF

Biominerlization and Possible Endosulfan Degradation Pathway Adapted by Aspergillus niger

  • Bhalerao, Tejomyee S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1610-1616
    • /
    • 2013
  • Endosulfan is a chlorinated pesticide; its persistence in the environment and toxic effects on biota are demanding its removal. This study aims at improving the tolerance of the previously isolated fungus Aspergillus niger (A. niger) ARIFCC 1053 to endosulfan. Released chloride, dehalogenase activity, and released proteins were estimated along with analysis of endosulfan degradation and pathway identification. The culture could tolerate 1,000 mg/ml of technical grade endosulfan. Complete disappearance of endosulfan was seen after 168 h of incubation. The degradation study could easily be correlated with increase in released chlorides, dehalogenase activity and protein released. Comparative infrared spectral analysis suggested that the molecule of endosulfan was degraded efficiently by A. niger ARIFCC 1053. Obtained mass ion values by GC-MS suggested a hypothetical pathway during endosulfan degradation by A. niger ARIFCC 1053. All these results provide a basis for the development of bioremediation strategies to remediate the pollutant under study in the environment.