• Title/Summary/Keyword: epidermal permeability barrier function

Search Result 14, Processing Time 0.021 seconds

Beneficial Effect of Curcumin on Epidermal Permeability Barrier Function in Hairless Rat (무모쥐에서 자외선에 의한 피부 장벽 손상에 미치는 커큐민의 보호 효과)

  • Jeon, Hee-Young;Kim, Jeong-Kee;Kim, Wan-Gi;Lee, Sang-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.686-690
    • /
    • 2008
  • Recent research has shown that curcumin has beneficial effects in a variety of skin diseases, including scleroderma, psoriasis, and skin cancer. In this study, we assessed the effects of curcumin on epidermal permeability barrier function in vivo and in vitro. In order to evaluate the effects of curcumin on epidermal permeability barrier function in vivo, hairless rats were exposed to UVB irradiation, and curcumin was administered orally at a dosage of 150 mg/kg per day for 8 weeks. Transepidermal water loss (TEWL) and epidermal thickness were measured at the end of the experiment. The expression of filaggrin, a marker of keratinocyte differentiation, and serine palmitoyltransferase (SPT), a marker of the formation of the stratum corneum lipid barrier, in human HaCat keratinocytes were analyzed. The in vivo results showed that an 8 week administration of curcumin markedly prevented the UVB-induced increase in TEWL. The UV-induced increase in epidermal thickness was also reduced significantly by curcumin treatment. The in vitro results demonstrated the concentration-dependent effects of curcumin on the expression of both filaggrin and SPT in HaCat cells, reflecting the notion that curcumin can induce epidermal keratinocyte differentiation and can improve the recovery of skin barrier functions. These results show that curcumin is a promising candidate for the improvement of epidermal permeability barrier function.

Epidermal Homeostasis and Dry Skin Management (표피항상성과 건조피부의 관리)

  • Park, Chang-Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Epidermis is one of the most dynamic organs in the human body. Multiple layers of keratinocytes in the epidermis continuously undergo proliferation, differentiation, and desquamation cycles, which is the bases of maintaining the epidermal homeostasis. Epidermal homeostasis eventually leads to establish and maintain permeability barrier homeostasis, the most important function of the epidermis. The permeability barrier is located in the stratum corneum. Tightly coordinated regulations are required for the sustained normal barrier function. Extensive studies have established that several nuclear hormone liposensors, including peroxisome proliferator-activated receptor a PPARa, PPARb/d, PPARg and LXRs are expressed in keratinocyte. Activation of PPARs and LXRs could provide a mechanism to coordinate the formation of the corneocytes and extracellular lipid membranes that constitute the stratum corneum. Topical application of PPAR/LXR ligands to murine skin results in the increased expression of keratinocyte differentiation-related proteins, such as involucrin, loricrin, profilaggrin, and trans-glutaminase 1, which would stimulate cornified envelope formation. In conclusion, topical application of ligands or activators of PPAR/LXR as an epidermotherapy would be a promising option to deal dry skin conditions such as atopy.

The Effect of Multi-lamellar Emulsion (MLE) on Skin Barrier Function: Can an Improve Permeability Barrier Provide a Solution for Itching due to Skin Barrier Malfunction\ulcorner

  • Youm, Jong-kyung;Kim, Yang-hee;Park, Byeong-deog;Jeong, Se-kyoo;Park, Eung-ho;Ahn, Sung-ku;Lee, Seung-hun
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.765-779
    • /
    • 2003
  • Physiological lipid mixtures comprised of cholesterol, ceramide and free fatty acid better maintain epidermal homeostasis and have been recently used for dermatoses induced by skin barrier damage, for example for atopic dermatitis and xerotic skin. Itching and dry atopic dermatitis of the skin may be related to altered skin barrier function. In a previous study, the use of multi-lamellar emulsion (MLE), which is a lipid mixtures containing cholesterol, pseudoceramide and free fatty acid, has been shown to accelerate the recovery of the epidermal permeability barrier. In this study, we assessed the efficacy of MLE compared with a currently used anti-itch moisturizer (AIM), the active ingredients of which are menthol and camphor, on barrier recovery after barrier disruption. To clarify the effect of MLE and AIM after acute barrier perturbation, we measured the relation between transepidermal water loss (TEWL) and the barrier recovery rate at 3, 6, 24, and 48 hours after tape stripping hairless mice and then observed changes in the stratum corneum (SC), including the intercellular lipid structure and secretion of lamellar bodies, by electron microscopy. MLE treated skin recover skin barrier function more rapidly, and AIM treated skin delayed barrier repair. Morphological changes in the epidermis, of MLE treated skin revealed well-conserved lipid multi-lamellar structures at 24 h after tape stripping, whereas AIM treated skin showed altered lamellar bilayers within the SC interstices at 48 h. In addition, MLE treated skin showed an increase in the number of LBs and in their secretions and a decrease in the number of SC layers versus AIM treated skin. These results suggest that MLE may accelerate the production of an epidermal permeability barrier in hairless mice by increasing the number and secretion of LB and improve the dryness and itch associated with an altered epidermal permeability barrier.

  • PDF

The effect of two Terpenoids, Ursolic acid and Oleanolic acid on epidermal permeability barrier and simultaneously on dermal functions

  • Lim Suk Won;Jung Sung Won;Ahn Sung Ku;Kim Bora;Ryoo Hee Chang;Lee Seung Hun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.205-232
    • /
    • 2003
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1 mg/ml UA or 0.1-1 mg/ml ONA after tape stripping, and TEWL (Transepidermal water loss) was measured . The recovery rate increased in those UA or ONA treated groups (0.1 mg/ml UA and 0.5 mg/ml ONA) at 6 h more than $20\%$ compared to vehicle treated group (p<0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/ml per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from f week without TEWL alteration (p<0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent $(ONA{\geq}UA>Vehicle)$. LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA>ONA>Veh). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via $PPAR\;\alpha$. Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either $ONA\;(10{\mu}M)$ or UA $(10{\mu}M)$ for 24h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via $PPAR\;{\alpha}$. Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.

The Effect of Two Terpenoids, Ursolic Acid and Oleanolic Acid on Epidermal Permeability Barrier and Simultaneously on Dermal Functions (우솔릭산과 올레아놀산이 피부장벽과 진피에 미치는 영향에 대한 연구)

  • Suk Won, Lim;Sung Won, Jung;Sung Ku, Ahn;Bora, Kim;In Young, Kim;Hee Chang , Ryoo;Seung Hun, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.263-278
    • /
    • 2004
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1mg/mL UA or 0.1-1mg/mL ONA after tape stripping, and TEWL (transepidermal water loss) was measured. The recovery rate increased in those UA or ONA treated groups (0.1mg/mL UA and 0.5mg/mL ONA) at 6h more than 20% compared to vehicle treated group (p < 0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/mL per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from 1 week without TEWL alteration (p < 0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA=UA > vehicle). LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA > ONA > vehicle). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via PPAR Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either ONA (10${\mu}$M) or UA (10${\mu}$M) for 24 h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via PPAR Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.

Effect of Oral Administration of Pineapple Fruit Extract Containing Glucosylceramide on Skin Barrier Function Improvement in Animal Model of Atopic Dermatitis (글루코실세라마이드 함유 파인애플과실추출물의 경구 투여가 아토피 피부염 동물모델의 피부 장벽기능 개선에 미치는 효과)

  • Miyake, Yasuo;Jo, Ho Young;Kim, Young-Dong;Yeom, Myeong-Hun
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.1
    • /
    • pp.77-85
    • /
    • 2021
  • Glucosylceramides (GluCer) are known to play an important role in both water retention and epidermal permeability barrier function in the mammalian stratum corneum. In this study, we investigated the effects of pineapple fruit extract containing glucosylceramides (PFEG) on the maintenance and recovery of skin barrier function using atopic dermatitis-induced animal models. Five-week-old male Hos:HR-1 mice were divided into four groups fed on standard diet, unsaturated fatty acids-deficient (HR-AD) diet, and HR-AD diet supplemented with 0.01% or 0.1% pineapple-GluCer. Skin barrier function was evaluated by transepidermal water loss (TEWL), dermal moisture content, moisture content of the stratum corneum and wrinkle formation. The control group (HR-AD administration group) showed increased transepidermal water loss (TEWL), while the epidermal moisture content and the moisture content of the stratum corneum slowly decreased. However, in the PFEG groups (with 0.1% or 0.01% glucosylceramide), the TEWL levels were significantly reduced at 2 weeks. The PFEG also helped maintain skin moisturizing function by significantly suppressing the decrease of the epidermal moisture content and the moisture content of the stratum corneum. These results show that the PFEG is effective for maintaining and improving the function of the skin barrier. Therefore, this study suggests that PFEG is a potential candidate material for skin functional foods.

Effects of pegylation on physical and biological activities of N-acetylphytosphingosine, a short chain phytoceramide

  • Park, J. H.;Park, C. Y.;Y. A. Hwang;Kim, E. J.;Kim, J. W.;Park, C. S.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.498-498
    • /
    • 2003
  • Sphingolipids are important structural components of the stratum corneum lipids and serve the epidermal permeability barrier function. Recent investigations on biological activities of sphingolipids have revealed that they have a number of important biological functions in the cell such as cell proliferation and differentiation, anti-inflammation, mediation of signal transduction and many more.(omitted)

  • PDF

The effects of Two Terpenoids, UA and ONA on Skin Barrier and Its Application

  • S. W. Lim;S. W. Jung;Kim, Bora;H. C. Ryoo;Lee, S. H.;S. K. Ahn
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.108-109
    • /
    • 2003
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol, prunol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ON A are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepatoprotective, anti-inflammatory, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. To clarify the effects of UA and ONA on skin barrier recovery, both flank skin of 8-12 weeks hairless mice were topically treated with samples (2mg/ml) after tape stripping, then measured recovery rate using TEWL on hairless mice. The recovery rate increased in UA and ONA treated groups at 6h more than 20% compared to vehicle treated group (p <0.05). For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/ml per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to Vehicle group from 1 week without TEWL alteration (p<0.005). EM examination using Ru04 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA$\geq$UA>Vehicle). LM finding showed that stratum corneum was slightly increased and especially epidermal thickening and flattening was observed (UA>ONA>Vehicle). Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber increasing by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory experiments were also confirmed in vivo findings. This result suggested that the effects of UA and ONA related to not only skin barrier but also collagen and elastic fibers. Taken together, UA and ONA can be relevant candidates to improve barrier function and pertinent agents for cosmetic applications.

  • PDF

Characteristics of Percutaneous Absorption for Three Kinds of Phthalate (Phthalate 3종에 대한 경피투과 특성 연구)

  • Jung, Duck-Chae;Yoon, Cheol-Hun;Um, Mi-Sun;Hwang, Hyun-Suk;Baek, Jung-Hun;Choi, Jin-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.4
    • /
    • pp.360-368
    • /
    • 2013
  • Objectives: Phthalates are used in a large variety of products including as coatings of pharmaceutical tablets, film formers, stabilizers, dispersants, emulsifying agents, and suspending agents. They have been the subject of great public concern in recent years. The extensive uses of this material have attracted attention and issues regarding its safety have been raised. Methods: In this study, three types of phthalate skin permeation were studied using matrixes such as ointments, creams and lotions in vitro. The absorption of phthalate diesters [Dimethyl phthalate (DMP), Di-n-propyl phthalate (DPP) and Di-n-pentyl phthalate (DNPP)] using film former has been measured in vitro through rat skin. Epidermal membranes were set up in Franz diffusion cells and their permeability to PBS measured in order to establish the integrity of the skin before the phthalates were applied to the epidermal surface. Results: Absorption rates for each phthalate ester were determined and permeability assessment made to quantify any irreversible alterations in barrier function due to contact with the esters. Types of phthalate in vitro experimental results quickly appeared in the following order DMP > DPP ${\geq}$ DNPP. Conclusions: In the experimental results, lotion> cream> ointment, and the permeation rate of lotion with a great amount of moisture was the fastest. Skin permeation rate is generally influenced by the chemical characteristics of a given chemical, such as molecular weight and lipophilicity. As the esters became more lipophilic and less hydrophilic, the rate of absorption decreased.

Anti-oxidative and skin barrier effects of natural plants with a supercritical extract (초임계 추출을 적용한 식물추출물의 항산화 및 피부장벽 효과)

  • Kim, Bora;Lee, Su Min;Hwang, Tae-Young;Kim, Hyun-Soo
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.597-601
    • /
    • 2013
  • In this study, we searched for bioactive compounds from natural resources with a supercritical extract. We selected the extracts of Chrysanthemum zawadskii, Lufa cylindrica, Paeonia lactiflora, Gardenia jasminoides and Scutellaria baicalensis, as natural materials, and evaluated the effects of their skin barrier function. We found that these extracts increased the transactivation activity of the PPAR-responsive element (PPRE) and the anti-oxidation with different priorities, respectively. In addition, these extracts promoted the expression of proteins related to cornified envelope (CE) formation, such as involucrin. From these results, we suggest that natural materials from supercritical extracts will be pertinent candidates for the improvement of the epidermal permeability barrier function.