• Title/Summary/Keyword: epoxy cement mortar

Search Result 36, Processing Time 0.028 seconds

Experimental Studies on the Properties of Epoxy Resin Mortars (에폭시 수지 모르터의 특성에 관한 실험적 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF

Strength Characteristics of Epoxy Cement Mortar without Hardening Agent (경화제를 사용하지 않은 에폭시 시멘트 모르타르의 압축강도 특성에 관한 연구)

  • Park, Young-Shik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.207-211
    • /
    • 2007
  • The durable lifetime of RC structures is shortened by various reasons, which are the generation of cracks in construction and service term, the exterior deterioration according to climatic condition, the surface damage due to chloride attack and the corrosion of reinforced bars. The durability of concrete structures is nevertheless able to be increased by the method and the material of reinforcement and repair. The epoxy resin is widely used for reinforment and repair of concrete because of the superiority in mechanical property, adhesive property, abrasion resistance, impact resistance and chemical resistance. The epoxy cement mortar with hardening agent has a lot of disadvantages that are troublesome mixing work, weakened weatherability and high cost for hardening agent. In this study, the mix proportion of mortar is presented just only with epoxy resin and some admixtures, and the test result of mortar without hardening agent shows the higher strength than the mortar with hardening agent. In the mix proportion, the weight of epoxy resin must be less than 15% of the unit weight of cement, and 10% of unit weight of cement is adequate for the weight of admixtures.

  • PDF

The Basic Study on the Underwater-Hardening Epoxy Mortar Using Stone Powder Sludge (석분슬러지를 이용한 수중 경화형 에폭시 모르타르의 개발에 관한 기초적 연구)

  • Jung Eun-Hye;Kawg Eun-Gu;Bae Dae-Kyung;Cho Sung-Hyun;Bae Kee-Sun;Kim Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.409-412
    • /
    • 2005
  • Because the underwater structures are subjected to the deterioration according to use environment, it is necessary to repair and reinforce when the durable performances are considered in structures. In generally, epoxy mortar is used to repair materials of underwater concrete. It is divided epoxy and filler which is organized cement and sand. Cement can be replaced by stone powder sludge in waste because the grading of stone powder sludge in drying state has similar to that of cement. As result of study, it is possible that stone powder sludge can be applied for replacement materials of cement in epoxy mortar, because the strength is not different when filler in epoxy mortar is alternated stone powder sludge.

  • PDF

A Study on Fundamental Performance of Epoxy Resin Mortar Mixed Special Cement for Concrete Surface Control (특수시멘트 혼입 에폭시 수지계 콘크리트용 바탕조정재의 기초물성에 관한연구)

  • 최성민;김용현;황원주;오상근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.145-150
    • /
    • 1998
  • This study deals with the effect on performance of epoxy resign mortar mixed special cement for surface control and maintenance of aging concrete construction. The test of main property of epoxy resign in this study are the evaluation on the adhesive strength between substrate and epoxy resign mortar under the environment of wet or concrete substrate surface. We gained the test results of good adhesive strength over 15 kgf/$\textrm{cm}^2$ under the wet and dry condition of concrete surface.

  • PDF

Evaluation Repair Performance of Damaged R/C Beams due to Reinforcement Corrosion (철근 부식에 의해 단면이 손상된 R.C보의 보수성능평가)

  • Jeong, Sang-In;Hong, Geon-Ho;Shin, Yeong-Soo;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.733-738
    • /
    • 2000
  • This paper was aimed to evaluate the structural performance of flexural members repaired by polymer cement and epoxy mortar at soffit. Main test variables were repair materials, ratio of reinforcement and additional reinforcing bars. Test results shows that the repaired beams could change flexural capacity by materials and additional reinforcing bars. In polymer cement, the section repaired can carry same load, cracking moment and the flexural stiffness of the monolithic beams with same size. In epoxy mortar, all data were greater than the shotcrete. However, note that epoxy mortar may conduct member into brittle failure mode.

  • PDF

Strength Properties of Bisphenol A-Type Epoxy-Modified Mortars under Various Curing Conditions (각종 양생조건에 따른 비스페놀 A형 에폭시수지 혼입 모르타르의 강도성상)

  • Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.55-59
    • /
    • 2009
  • The epoxy resin without hardener can harden by a ring-opening reaction in the presence of the alkalies produced by the hydration of cement in epoxy-modified mortars and concretes. This paper investigates the effect of curing conditions on the strength improvement of polymer-modified mortars using bisphenol A-type epoxy resin without hardener. The polymer-modified mortars using epoxy resin are prepared with various polymer-cement ratios, and subjected to ideal, water, dry and heat cures. In the heat cure, the epoxy-modified mortars are sealed or unsealed with a PVDC (polyvinylidene chloride) film. The epoxy-modified mortars are tested for flexural and compressive strengths at desired curing methods. The microstructures of the epoxy-modified mortars are also observed by scanning electron microscope. The effects of curing conditions on the strength development of the epoxy-modified mortars are examined. From the test results, the marked effectiveness of the heat cure under the PVDC film sealing against the development of the strength of the epoxy-modified mortar without the hardener is recognized. The flexural and compressive strengths of 7-day-90℃ heat-cured, PVDC film-sealed epoxy-modified mortars without hardener reach 7 to 17MPa and 24 to 44MPa respectively, and are two to three times of Unmodified mortar. Such high strength development of the epoxy-modified mortars may be achieved by the dense microstructure formation by cement hydrates and the hardening of the epoxy resin in the mortars.

  • PDF

Strength Characteristics of Epoxy Resin Mortar (에폭시 수지 모르터의 강도 특성)

  • 정규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.3
    • /
    • pp.92-99
    • /
    • 1982
  • The objective of this study was to investigate the compressive and bending strength characteristics of epoxy resin mortar, which is still in an early stage of its use and study in Korea. The results obtained are summarized as follows; 1. The compressive strengths of epoxy resin mortar after 1 day, 2 days and 3 days were gained 87%, 91% and 95%, respectively, in view of that of mortar at the age of 7 days. This result showed that the initial compressive strength within 1 day was very high. 2. The highest compressive strength of epoxy resin mortar was 914 kg/cm2 at the point of having the mixing ratio of one to two. It reached up to 3.7 times that of the normal portland cement mortar at the age of 28 days. 3. The bending strengths of epoxy resin mortar after 1 day, 2 days and 3 days came up to 88%, 93% and 97%, respectively, in comparing that of mortar at the age of 7 days. It was expressed to be simielar to the tendency of compressive strength. 4. The highest bending strength of epoxy resin mortar was 384 kg/cm2 at mixing ratio of one to two. It came up to as much as 6.5 times in comparing with that of the normal portland cement mortar at the age of 28 days. Therefore, the epoxy resin mortar would be effective for promoting the bending strength of structural members. 5. The regression equation between compressive and bending strength was obtained as follows; oo~=0.391 oc+27.54 (r=0.99) And the estimated value of bending strength was corresponded to about 44 per cent in comparing with that of the compressive strength.

  • PDF

Indoor and outdoor pullout tests for retrofit anchors in low strength concrete

  • Cavunt, Derya;Cavunt, Yavuz S.;Ilki, Alper
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.951-968
    • /
    • 2016
  • In this study, pullout capacities of post-installed deformed bars anchored in low strength concrete using different bonding materials are investigated experimentally. The experimental study was conducted under outdoor and indoor conditions; on the beams of an actual reinforced concrete building and on concrete bases constructed at Istanbul Technical University (ITU). Ready-mixed cement based anchorage mortar with modified polymers (M1), ordinary cement with modified polymer admixture (M2), and epoxy based anchorage mortar with two components (E) were used as bonding material. Furthermore, test results are compared with the predictions of current analytical models. Findings of the study showed that properly designed cement based mortars can be efficiently used for anchoring deformed bars in low quality concrete. It is important to note that the cost of cement based mortar is much lower with respect to conventional epoxy based anchorage materials.

An experimental study on the adhesive properties of the top coated materials for concrete slab (콘크리트 슬래브 마감재료의 계면부착 거동에 관한 실험적 연구)

  • 이종열;손형호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.273-277
    • /
    • 1995
  • This study presents the physical and adhesive properties of the top coated materials for concrete slab. i.e, cement based top coated materials. epoxy mortar. The purpose of this study offers the investigation of construction factors to affect the quality of the coated materials over hardened concrete. The experimental results shows that the water content 3% of sand decline the strength and adhesive properties of epoxy mortar, on the other hand, dry surface and curing for cement based material.

  • PDF

A Study on te Water Diffusion of Polymer-Modified Mortars in Drying Process (건조과정에 있어서 폴리머 시멘트 모르터의 수분확산에 관한 연구)

  • 조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.135-143
    • /
    • 1996
  • Diffusion of water in hardened cement concrete and mortar influences on the dry shrinkage. creep. modulus of' elasticity, etc. In general, water loss through drying process in polymer-modified concrete and mortar is small compared with that of unmodified concrete and mortar due to the films formed by polymer as cement modifieder. The purpose of this study is to investigate the diffusion process of water in the polymer-modified mortars. The polymer-modified mortars using three polymer dispersions and epoxy resin are prepared with various polymer-cement ratios, and water diffusion coefficient of polymer-modified mortars according to inside water content is calculated. From the test results, the water diffusion coefficient of polymer modified mortars i s smaller than that of unmodified mortars and decreases with increasing polymer cement ratio.