• Title/Summary/Keyword: equimultiple ideal

Search Result 3, Processing Time 0.018 seconds

EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1

  • Kim, Mee-Kyoung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.127-135
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$ $I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$ $X^1$$_{A}$._{A}$./.

ON CERTAIN GRADED RINGS WITH MINIMAL MULTIPLICITY

  • Kim, Mee-Kyoung
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.887-893
    • /
    • 1996
  • Let (R,m) be a Cohen-Macaulay local ring with an infinite residue field and let $J = (a_1, \cdots, a_l)$ be a minimal reduction of an equimultiple ideal I of R. In this paper we shall prove that the following conditions are equivalent: (1) $I^2 = JI$. (2) $gr_I(R)/mgr_I(R)$ is Cohen-Macaulay with minimal multiplicity at its maximal homogeneous ideal N. (3) $N^2 = (a'_1, \cdots, a'_l)N$, where $a'_i$ denotes the images of $a_i$ in I/mI for $i = 1, \cdots, l$.

  • PDF