• Title/Summary/Keyword: equivalent modal load

Search Result 28, Processing Time 0.027 seconds

Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method (유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석)

  • 조재혁;김현욱;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges : (1) Introduction to numerical model

  • Kwak, Hyo-Gyoung;Shin, Dong-Kyu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.215-238
    • /
    • 2009
  • This paper introduces an improved modal pushover analysis (IMPA) which can effectively evaluate the seismic response of multi-span continuous bridge structures on the basis of modal pushover analysis (MPA). Differently from previous modal pushover analyses which cause the numerical unstability because of the occurrence of reversed relation between the pushover load and displacement, the proposed method eliminates this numerical instability and, in advance the coupling effects induced from the direct application of modal decomposition by introducing an identical stiffness ratio for each dynamic mode at the post-yielding stage together with an approximate elastic deformation. In addition to these two introductions, the use of an effective seismic load, calculated from the modal spatial force and applied as the distributed load, makes it possible to predict the dynamic responses of all bridge structures through a simpler analysis procedure than those in conventional modal pushover analyses. Finally, in order to establish validity and applicability of the proposed method, correlation studies between a rigorous nonlinear time history analysis and the proposed method were conducted for multi-span continuous bridges.

Structural Optimization under Equivalent Static Loads Transformed from Dynamic Loads Based on Displacement (변위에 기초한 동하중에서 변환된 등가정하중하에서의 구조최적설계)

  • Gang, Byeong-Su;Choe, U-Seok;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1949-1957
    • /
    • 2000
  • All the loads in the real world act dynamically on structures. Since dynamic loads are extremely difficult to handle in analysis and design, static loads are utilized with dynamic factors. The dyna mic factors are generally determined based on experiences. Therefore, the static loads can cause problems in precise analysis and design. An analytical method based on modal analysis has been proposed for the transformation of dynamic loads into equivalent static load sets. Equivalent static load sets are calculated to generate an identical displacement field in a structure with that from dynamic loads at a certain time. The process is derived and evaluated mathematically. The method is verified through numerical tests. Various characteristics are identified to match the dynamic and the static behaviors. For example, the opposite direction of a dynamic load should be considered due to the vibration response. A dynamic bad is transformed to multiple equivalent static loads according to the number of the critical times. The places of the equivalent static load can be different from those of the dynamic load. An optimization method is defined to use the equivalent static loads. The developed optimization process has the same effect as the dynamic optimization which uses the dynamic loads directly. Standard examples are solved and the results are discussed

The Effect of Higher Vibration Modes on the Design Seismic Load (고차진동모드의 영향을 고려한 충지진하중)

  • 이동근;이석용;신용우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.73-78
    • /
    • 1990
  • In current practice of earthquake resistant design the equivalent lateral force procedure is widely used for its simplicity and convenience. But the equivalent lateral force procedure is derived based on the assumption that the dynamic behavior of the structure is governed primarily by the fundamental vibration mode. Therefore proper prediction of dynamic responses of the structure is unreliable using the equivalent lateral force procedure when the effect of higher vibration modes on the dynamic behavior is negligible. In this study design seismic load which can reflect the effect of higher vibration modes is proposed from the point of view of proper assessment of story shears which have the major influence on the design moment of beams and columns. To evaluate the effect of higher modes, differences between the story force based on the equivalent lateral force procedure specified in current earthquake resistance building code and the one based on modal analysis using design spectrum are examined. From these results improved design seismic load for the equivalent lateral force procedure which can reflect the effect of higher vibration modes is proposed.

  • PDF

Design Eccentricity in Equivalent Seismic Load Using Modal Analysis (모드 해석을 이용한 등가 지진하중에서의 설계 편심)

  • 조소훈;이명규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.268-275
    • /
    • 2001
  • Modal analysis does well predict the elastic dynamic response of the torsionally unbalanced structure. But modal analysis overestimates the rotation of the structure in inelastic range, so one side members require ductility too much and the others require ductility too small in comparison with torsionally balanced structure. In this paper, in order to reduce difference of ductility demand between both side members of the torsionally unbalanced structure, design eccentricity of seismic load is evaluated and the method determining the strength center of structure is proposed using modal analysis. For several cases, the ductility demand of stucture is compared to investigate the propriety of the proposed approach.

  • PDF

The Design Eccentricity for Torsionally Unbalanced Structure (비틀림 거동을 하는 구조물의 설계 편심)

  • 조소훈;이명규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.63-72
    • /
    • 2001
  • In this paper, to satisfy the safety and economy immediately, we assume the center of lateral load in case the dynamic motion of the torsionally unbalanced structure is transformed into the static lateral load using modal analysis and proposes a method to control the design eccentricity in order to make the center of lateral load coincide with the center of strength. And when the structure is designed by proposed method, it is shown that the structure designed by proposed method does not demand excessive additional ductility in comparison with the structure designed by provisions of other seismic building code.

  • PDF

Design Optimization of Valve Support with Enhanced Seismic Performance (내진성능 향상을 위한 밸브지지대 최적형상 설계)

  • Kim, Hyoung Eun;Keum, Dong Yeop;Kim, Dea Jin;Kim, Jun Ho;Hong, Seong Kyeong;Choi, Won Mok;Kim, Sang Yeong;Seok, Chang Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.997-1005
    • /
    • 2015
  • In this study, modal analysis and equivalent static load analysis for valve supports of 26" gas piping in gas stations were conducted and the existing straight and inclined types of valve supports were compared using seismic performance testing. Also, a new valve support shape was suggested by optimizing position of fastener holes, width and thickness of the support, and size of bracket. Improvement in seismic performance by design optimization was verified through equivalent static load analysis. The seismic performance of the newly proposed valve support was greatly improved and the maximum displacement and maximum stress of the seismic load was about 20% lower than those of the existing valve support.

Applicability of Improved Modal Pushover Analysis of Multi-Span Bridges Under Earthquake Load (다경간 연속 교량의 내진성능 평가를 위한 개선된 모드별 비탄성 정적해석방법의 응용성 연구)

  • Kwak, Hyo-Gyoung;Shin, Dong-Kyu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.795-800
    • /
    • 2007
  • In the previous study, a simple but effective analysis procedure, named as an Improved Modal Pushover Analysis (IMPA) was proposed to estimates the seismic capacities of multi-span continuous bridge structures, on the basis of the modal pushover analysis which considers all the dynamic modes of a structure. Differently from other previous studies, IMPA maintains the simplicity of the capacity-demand curve method and also gives a better estimation of the maximum dynamic response of a structure. Nevertheless, its applicability has never been approved for multi-span continuous bridges with large differences in the length of their adjacent piers. This paper, accordingly, concentrates on a parametric study to verify the efficiency and limitation in application of IMPA through a correlation study between various analytical models including the Equivalent Single Degree Of Freedom (ESDOF) and Modal Pushover Analysis (MPA) usually used in the seismic design of structures. Based on the obtained numerical results, this paper introduces a practical guidance and/or limitation for using IMPA to predict the seismic response of a bridge effectively.

  • PDF

Improved Modal Pushover Analysis of Multi-span Continuous Bridge Structures (다경간 연속 교량 구조물의 지진응답 평가를 위한 개선된 모드별 비탄성 정적 해석법에 관한 연구)

  • Kwak, Hyo-Gyoung;Hong, Seong Jin;Kim, Young Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.497-512
    • /
    • 2006
  • In this paper, a simple but effective analysis procedure to estimate seismic capacities of multi-span continuous bridge structures is proposed on the basis of modal pushover analysis considering all the dynamic modes of structure. Unlike previous studies, the proposed method eliminates the coupling effects induced from the direct application of modal decomposition by introducing an identical stiffness ratio and an approximate elastic deformed shape. Moreover, in addition to these two introductions, the use of an appropriate distributed load {P} makes it possible to predict the dynamic responses for all kinds of bridge structures through a simpler analysis procedure. Finally, in order to establish the validity and applicability of the proposed method, correlation studies between rigorous nonlinear time history analysis and the proposed method are conducted for multi-span continuous bridges.

The Effect of Higher Vibration Modes on the Design Seismic Load (고차진동모드의 영향을 고려한 층지진하중)

  • 이동근;신용우
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.123-132
    • /
    • 1990
  • In current practice of earthquake resistant design the equivalent lateral force procedure is widely used because of its simplicity and convenience. But the equivalent lateral force procedure is derived based on the assumptions that the dynamic behavior of the structure is governed primarily by the fundamental vibration mode and the effect of higher modes is included in an approximate manner. Therefore the prediction of dynamic responses of structures using the equivalent lateral force procedure is not reliable when the effect of higher vibration modes on the dynamic behavior is significant. In this study, design seismic load which can reflect the effect of higher vibration modes is proposed from the point of view of proper assessment of story shears which have the major influence on the design moment of beams and columns. To evaluate the effect of higher modes, differences between the story force based on the equivalent lateral force procedure specified in current earthquake resistance building code and the one based on modal analysis using design spectrum analysis are examined. From these results an improved design seismic load for the equivalent lateral force procedure which can reflect the effect of higher vibration modes are proposed.

  • PDF