• Title/Summary/Keyword: equivalent nodal loads

Search Result 11, Processing Time 0.024 seconds

Application of Equivalent Walking Loads for Efficient Analysis of Floor Vibration Induced by Walking

  • Kim, Gee-Cheol;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.65-76
    • /
    • 2004
  • Walking loads are usually considered as nodal loads in the finite element vibration analysis of structures subjected to walking loads. Since most of the walking loads act on elements not nodes, the walking loads applied on the elements should be converted to the equivalent nodal walking loads. This paper begins with measuring walking loads by using a force plate equipped with load cells and investigates the characteristics of the walking loads with various walking rates. It is found that the walking loads are more affected by walking rates than other parameters such as pedestrian weight, type of footwear, surface condition of floor etc. The measured walking loads are used as input loads for a finite element model of walking induced vibration. Finally, this paper proposes the equivalent nodal walking loads that are converted from the walking loads acting on elements based on finite element shape functions. And the proposed equivalent walking loads are proved to be applicable for efficient analysis of floor vibration induced by walking loads.

  • PDF

보행하중을 받는 구조물의 효율적인 진동해석

  • 김기철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.159-166
    • /
    • 2000
  • Structures with a long span have a higher possibility of experiencing excessive vibration induced by human activities such as walking, running, jumping and dancing. These excessive vibration give occupants annoyance. The general method for the vibration analysis of structures subjected to walking loads is to apply a series of nodal loads with assigned time delays at the nodes. But this method has a limit in representing the walking loads. In this study, the equivalent nodal loads are introduced for an effective analysis of floor vibration induced by walking loads. And, walking loads with difference walking rate are measured and applied to the analytical model for numerical analysis.

  • PDF

An exact finite element for a beam on a two-parameter elastic foundation: a revisit

  • Gulkan, P.;Alemdar, B.N.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.259-276
    • /
    • 1999
  • An analytical solution for the shape functions of a beam segment supported on a generalized two-parameter elastic foundation is derived. The solution is general, and is not restricted to a particular range of magnitudes of the foundation parameters. The exact shape functions can be utilized to derive exact analytic expressions for the coefficients of the element stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and coefficients of the consistent mass and geometrical stiffness matrices. As illustration, each distinct coefficient of the element stiffness matrix is compared with its conventional counterpart for a beam segment supported by no foundation at all for the entire range of foundation parameters.

Modeling of Dynamic Loads Due to Pedestrian Walking

  • Kim, Gee-Cheol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.1 s.15
    • /
    • pp.81-89
    • /
    • 2005
  • Walking loads are influenced by various parameters so that they need to be measured considering such parameters. Walking frequency(rate) is experimentally investigated as the most important parameter in determining the walking load expressed with dynamic load factor. This study focuses on the derivation of continuous walking load-time functions at any walking frequency ranging from 1.30Hz to 2.70Hz. Experiments were conducted to obtain time-histories of walking loads at the increment of 0.1Hz, which are decomposed into harmonic loads by the Fourier transformation. The polynomial load-time functions are proposed representing the relationship between harmonic coefficients and walking frequencies, thereby easily formulating walking load-time histories for dynamic load factor with various walking frequencies.

  • PDF

Efficient Analysis of Structure Vibration Induced by Walking Loads (보행하중에 의한 구조물 진동의 효율적인 해석)

  • 김기철;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.21-29
    • /
    • 2001
  • 주차장, 버스터미널, 스타디움, 집회공간과 같은 낮은 고유진동수를 갖는 장경간 건축물에서는 저속 차량의 이동하중이나 보행자의 보행하중과 같은 동적하중에 의해 과도한 바닥판 진동이 발생할 수 있으며 이러한 진동은 건축물의 이용자에게 불쾌감을 일으켜 건축물의 사용성에 심각한 영향을 주게된다. 구조물에 가해지는 보행하중의 일반적인 적용방법은 분할된 요소의 절점을 따라 절점하중으로 가하는 것이다. 그러나 이러한 해석모델은 보행하중을 절점에만 가해야하는 제한적인 문제점을 가지고 있어 보폭 수만큼 절점을 생성시켜야 하며 보폭이 변하거나 절점이외에 하중이 작용할 경우 해석모델을 수정해야하는 번거로움이 있다. 본 연구에서는 보행하중에 대한 계측과 분석을 통하여 보행하중의 동적특성을 분석하였으며 계측한 보행하중을 예제구조물에 적용하였다. 그리고 보행하중에 의한 구조물 진동의 효율적인 해석을 위하여 구조물에 가해지는 보행하중을 등가의 절점하중으로 치환하는 방법을 제안하였으며 제안된 등가절점 하중의 타당성을 검증하기 위하여 예제구조물의 진동해석을 수행하였다.

  • PDF

Vibration analysis of the plates subject to dynamic concentrated loads by using spectral element method (스펙트럴요소법을 이용한 동적집중하중을 받는 평판의 진동해석)

  • Lee, Joon-Keun;Lee, U-sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.635-643
    • /
    • 1998
  • A spectral element method(SEM) is introduced for the vibration analysis of a rectangular plate subject to dynamic concentrated loads. First, the spectral plate element is derived from the relations between the forces and displacements along the two opposite edges of plate element. The global spectral matrix equation is then formulated by assembling two spectral plate elements so that the dynamic concentrated load is located at the connection nodal line between two plate elements. the concentrated load is then spatially Fourier transformed in the direction of the connection nodal line to transform the two-dimensional plate problem into a simplified equivalent one-dimensional beam-like problem. We may benefit from these procedures in that the spectral results from the present SEM is compared with the exact analytical solutions to prove the remarkable accuracy of the present SEM, while this is not true for conventional finite element solutions, especially at high frequency.

Estimation of Moving Loads by Measuring Dynamic Response (동적 거동계측을 통한 이동하중 추정)

  • Cho, Jae Yong;Shin, Soobong;Choi, Kwang-Kyu;Kwon, Soon-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.129-137
    • /
    • 2007
  • An algorithm is proposed for estimating axle loads of trucks moving over a bridge by measuring dynamic responses. The bridge was modeled by a beam structure in the current applications of the proposed algorithm. Among the state vectors, measured acceleration was used and displacement was computed from measured strain at the same location. Nodal force vectors were computed by using a ready-made database of equivalent nodal force transformation matrix. The algorithm was examined through simulation studies and laboratory experiments. The effects of measurement noise and velocity error were investigated through simulation studies.

Structural Behavior of Concrete Pavement Due to Temperature Variations (온도변화에 의한 콘크리트 포장도로의 구조 거동 연구)

  • 조병완
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 1991
  • Some sections of concrete highway pavements have been viewed with great concern by highway officials and engineers due to the severe cracking and failure problems. This is mainly due to the traffic loads in addition to temperature variations between top and bottom of concrete slab, which cause the concrete slab to curl up and down depending on the thermal gradient, respectively. Subsequently, a major consideration was given to the derivation of stiffness matrix and equivalent nodal loads due to the uniform gravity load, temperature and shrinkage of concrete. And the structural behavior of concrete highway pavement due to the temperature variations throughout the nations has been emphasized.

  • PDF

Finite Element Analysis of Planar Effect on the Concrete Pavements (유한 요소법에 의한 콘크리트 포장 구조의 평면 거동연구)

  • Jo, Byung Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1091-1096
    • /
    • 1994
  • Since horizontal movements due to shrinkage and thermal gradients in concrete pavements involve no actual load, the stresses induced will be those due to closing of the pavement joints and subbase friction. Consequently, complete derivations of stiffness matrix and equivalent nodal loads due to planar effects on the concrete pavements was throughly undertaken using the finite rectangular elements with two degrees of freedom at each node. The numerical example shows that the tensile stress induced in a pavement due to concrete shrinkage might be negligible except at very long slab and very high coefficient of frictions. However the stresses in conjunction with principal traffic loads might cause cracking problems.

  • PDF

BWIM Using Measured Acceleration and Strain Data

  • Paik, In-Yeol;Lee, Seon-Dng;Shin, Soo-Bong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.3
    • /
    • pp.233-245
    • /
    • 2011
  • A new BWIM(bridge weigh-in-motion) algorithm using both measured strain and acceleration data is proposed. To consider the effects of bridge vibration on the estimation of moving loads, the dynamic governing equation is applied with the known stiffness and mass properties but damping is ignored. Dynamic displacements are computed indirectly from the measured strains using the beam theory and accelerations are measured directly by accelerometers. To convert a unit moving load to its equivalent nodal force, a transformation matrix is determined. The incompleteness in the measured responses is considered in developing the algorithm. To examine the proposed BWIM algorithm, simulation studies, laboratory experiments and field tests were carried. In the simulation study, effects of measurement noise and estimation error in the vehicle speed on the results were investigated.