• Title/Summary/Keyword: equivalent single degree of freedom

Search Result 79, Processing Time 0.03 seconds

A simple approach for the fundamental period of MDOF structures

  • Zhao, Yan-Gang;Zhang, Haizhong;Saito, Takasuke
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.231-239
    • /
    • 2017
  • Fundamental period is one of the most critical parameters affecting the seismic design of buildings. In this paper, a very simple approach is presented for estimating the fundamental period of multiple-degree-of-freedom (MDOF) structures. The basic idea behind this approach is to replace the complicated MDOF system with an equivalent single-degree-of-freedom (SDOF) system. To realize this equivalence, a procedure for replacing a two-degree-of-freedom (2-DOF) system with an SDOF system, known as a two-to-single (TTS) procedure, is developed first; then, using the TTS procedure successively, an MDOF system is replaced with an equivalent SDOF system. The proposed approach is expressed in terms of mass, stiffness, and number of stories, without mode shape or any other parameters; thus, it is a very simple method. The accuracy of the proposed method is investigated by estimating the fundamental periods of many MDOF models; it is found that the results obtained by the proposed method agree very well with those obtained by eigenvalue analysis.

Comparison of Energy Demand in Multi-Story Structures and Equivalent SDOF Systems (다층 구조물과 등가 단자유도계의 에너지 요구량 비교)

  • 최현훈;원영섭;김진구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.19-26
    • /
    • 2003
  • In energy-based design, the structures are generally transformed into equivalent SDOF systems to obtain the input and the dissipated energy. In this study the energy demands in multi-story structures were compared with that of equivalent single degree of freedom systems to validate the transformation method. Three-, eight-, and twenty-story steel moment-resisting frames and buckling restrained braced frames are compared with those of equivalent single degree of freedom systems. Sixty earthquake ground motions recorded in different soil conditions were used to compute the input and hysteretic energy demands in model structures. According to the analysis results, in 3 and 8-story structures the hysteretic energy demands computed in the equivalent SDOF structures are compatible with those computed in the original MDOF structures, while in the 20-story structures the transformed equivalent structures underestimated the hysteretic energy demands.

  • PDF

Equivalent SDF Systems Representing Steel Moment Resisting Frames (철골 모멘트 골조의 지진해석을 위한 등가 단자유도시스템)

  • Han, Sang-Whan;Moon, Ki-Hoon;Kim, Jin-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.21-28
    • /
    • 2008
  • To evaluate the seismic performance of multi-degree of freedom(MDF) systems, repeated nonlinear response history analyses are often conducted, which require extensive computational efforts. To reduce the amount of computation required, equivalent single degree of freedom(SDF) systems representing complex multi-degree of freedom(MDF) systems have been developed. For the equivalent SDF systems, bilinear models and trilinear models have been most commonly used. In these models, the P-$\Delta$ effect due to gravity loads during earthquakes can be accounted for by assigning negative stiffness after elastic range. This study evaluates the adequacy of equivalent SDF systems having these hysteretic models to predict the actual response of steel moment resisting frames(SMRF). For this purpose, this study conducts cyclic pushover analysis, nonlinear time history analysis and incremental dynamic analysis(IDA) for SAC-Los Angeles 9-story buildings using nonlinear MDF models(exact) and equivalent SDF models(approximate). In addition, this study considers the strength limited model.

Estimation of earthquake induced story hysteretic energy of multi-Story buildings

  • Wang, Feng;Zhang, Ning;Huang, Zhiyu
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.165-178
    • /
    • 2016
  • The goal of energy-based seismic design is to obtain a structural design with a higher energy dissipation capacity than the energy dissipation demands incurred under earthquake motions. Accurate estimation of the story hysteretic energy demand of a multi-story structure is the key to meeting this goal. Based on the assumption of a mode-equivalent single-degree-of-freedom system, the energy equilibrium relationship of a multi-story structure under seismic action is transformed into that of a multi-mode analysis of several single degree-of-freedom systems. A simplified equation for the estimation of the story seismic hysteretic energy demand was then derived according to the story shear force and deformation of multi-story buildings, and the deformation and energy relationships between the mode-equivalent single-degree-of-freedom system and the original structure. Sites were categorized into three types based on soil hardness, namely, hard soil, intermediate hard (soft) soil, and soft soil. For each site type, a 5-story and 10-story reinforced concrete frame structure were designed and employed as calculation examples. Fifty-six earthquake acceleration records were used as horizontal excitations to validate the accuracy of the proposed method. The results verify the following. (1) The distribution of seismic hysteretic energy along the stories demonstrate a degree of regularity. (2) For the low rise buildings, use of only the first mode shape provides reasonably accurate results, whereas, for the medium or high rise buildings, several mode shapes should be included and superposed to achieve high precision. (3) The estimated hysteretic energy distribution of bottom stories tends to be underestimated, which should be modified in actual applications.

Ductility and ductility reduction factor for MDOF systems

  • Reyes-Salazar, Alfredo
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.369-385
    • /
    • 2002
  • Ductility capacity is comprehensively studied for steel moment-resisting frames. Local, story and global ductility are being considered. An appropriate measure of global ductility is suggested. A time domain nonlinear seismic response algorithm is used to evaluate several definitions of ductility. It is observed that for one-story structures, resembling a single degree of freedom (SDOF) system, all definitions of global ductility seem to give reasonable values. However, for complex structures it may give unreasonable values. It indicates that using SDOF systems to estimate the ductility capacity may be a very crude approximation. For multi degree of freedom (MDOF) systems some definitions may not be appropriate, even though they are used in the profession. Results also indicate that the structural global ductility of 4, commonly used for moment-resisting steel frames, cannot be justified based on this study. The ductility of MDOF structural systems and the corresponding equivalent SDOF systems is studied. The global ductility values are very different for the two representations. The ductility reduction factor $F_{\mu}$ is also estimated. For a given frame, the values of the $F_{\mu}$ parameter significantly vary from one earthquake to another, even though the maximum deformation in terms of the interstory displacement is roughly the same for all earthquakes. This is because the $F_{\mu}$ values depend on the amount of dissipated energy, which in turn depends on the plastic mechanism, formed in the frames as well as on the loading, unloading and reloading process at plastic hinges. Based on the results of this study, the Newmark and Hall procedure to relate the ductility reduction factor and the ductility parameter cannot be justified. The reason for this is that SDOF systems were used to model real frames in these studies. Higher mode effects were neglected and energy dissipation was not explicitly considered. In addition, it is not possible to observe the formation of a collapse mechanism in the equivalent SDOF systems. Therefore, the ductility parameter and the force reduction factor should be estimated by using the MDOF representation.

Multimode pushover analysis based on energy-equivalent SDOF systems

  • Manoukas, Grigorios E.;Athanatopoulou, Asimina M.;Avramidis, Ioannis E.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.531-546
    • /
    • 2014
  • In this paper the extension of a recently established energy-based pushover procedure in order to include the higher mode contributions to the seismic response of structures is presented and preliminary evaluated. The steps of the proposed methodology in its new formulation are quite similar to those of the well-known Modal Pushover Analysis. However, the determination of the properties of the 'modal' equivalent single-degree-of-freedom systems is achieved by a rationally founded energy-based concept. Firstly, the theoretical background and the assumptions of the proposed methodology are presented and briefly discussed. Secondly, the sequence of steps to be followed for its implementation along with the necessary equations is systematically presented. The accuracy of the methodology is evaluated by an extensive parametric study which shows that, in general, it provides better results compared to those produced by other similar procedures. In addition, the main shortcoming of the initial version of the methodology now seems to be mitigated to a large extent.

Computer Simulation and Modeling of Cushioning Pneumatic Cylinder (공기압 실린더의 쿠션특성에 관한 모델링 및 컴퓨터 시뮬레이션)

  • 이상천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.794-805
    • /
    • 1999
  • Pneumatic cushioning cylinders are commonly employed for vibration and shock control. A mathematical simulation model of a double acting pneumatic cushioning cylinder designed to absorb shock loads is presented which is based on the following assumptions; ideal equation of state isentropic flow through a port conservation of mass polytropic thermodynamics single degree of freedom piston dynamics and energy equivalent linear damping. These differential equation can be solved through numerical integration using the fourth order Runge-Kutta method. An experimental study was conducted to validate the results obtained by the numerical integra-tion technique. Simulated results show good agreement with experimental data. The computer simulation model presented here has been extremely useful not only in understanding the has been extremely useful not only in understanding the basic cushioning but also in evaluating different designs.

  • PDF

Equivalent period and damping of SDOF systems for spectral response of the Japanese highway bridges code

  • Sanchez-Flores, Fernando;Igarashi, Akira
    • Earthquakes and Structures
    • /
    • v.2 no.4
    • /
    • pp.377-396
    • /
    • 2011
  • In seismic design and structural assessment using the displacement-based approach, real structures are simplified into equivalent single-degree-of-freedom systems with equivalent properties, namely period and damping. In this work, equations for the optimal pair of equivalent properties are derived using statistical procedures on equivalent linearization and defined in terms of the ductility ratio and initial period of vibration. The modified Clough hysteretic model and 30 artificial accelerograms, compatible with the acceleration spectra for firm and soft soils, defined by the Japanese Design Specifications for Highway Bridges are used in the analysis. The results obtained with the proposed equations are verified and their limitations are discussed.

Inelastic behavior of systems with flexible base

  • Fernandez-Sola, Luciano R.;Huerta-E catl, Juan E.
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.411-424
    • /
    • 2018
  • This study explores the inelastic behavior of systems with flexible base. The use of a single degree of freedom system (ESDOF) with equivalent ductility to represent the response of flexible base systems is discussed. Two different equations to compute equivalent ductility are proposed, one which includes the contribution of rigid body components, and other based on the overstrength of the structure. In order to asses the accuracy of ESDOF approach with the proposed equations, the behavior of a 10-story regular building with reinforced concrete (RC) moment resisting frames is studied. Local and global ductility capacity and demands are used to study the modifications introduced by base flexibility. Three soil types are considered with shear wave velocities of 70, 100 and 250 m/s. Soil-foundation stiffness is included with a set of springs on the base (impedance functions). Capacity curves of the building are computed with pushover analysis. In addition, non linear time history analysis are used to asses the ductility demands. Results show that ductility capacity of the soil-structure system including rigid body components is reduced. Base flexibility does not modify neither yield and maximum base shear. Equivalent ductility estimated with the proposed equations is fits better the results of the numerical model than the one considering elastoplastic behavior. Modification of beams ductility demand due to base flexibility are not constant within the structure. Some elements experience reduced ductility demands while other elements experience increments when flexible base is considered. Soil structure interaction produces changes in the relation between yield strength reduction factor and structure ductility demand. These changes are dependent on the spectral shape and the period of the system with fixed and flexible base.

Experimental Study on Equivalent Linear System for Rotational friction Damper (회전마찰감쇠기의 등가선형시스템에 관한 실험적 연구)

  • 김형섭;박지훈;민경원;이상현;이명규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.296-303
    • /
    • 2004
  • In this study, equivalent linear damping and stiffness of a single-degree-of-freedom (SDOF) structure with a rotational friction damper are estimated using the result of experiments and compared with those obtained from non-linear time history analyses. First, the transfer function of the test model is constructed and then the equivalent stiffness and damping are calculated, using the half-power bandwidth (HPB) method. For comparative study, those properties are estimated based on stochastic theory in the time domain. Both equivalent linear systems identified from experiments and numerical analyses correspond well. Further, it is observed that there exists an optimal clamping force on the rotational friction damper from estimated equivalent damping.

  • PDF