• Title/Summary/Keyword: equivalent temperature gradient

Search Result 23, Processing Time 0.028 seconds

A study on the Thermal Stress Distribution for Wire Electrical Discharge by Finite Element Method (와이어 방전 가공 시 발생되는 열응력 분포에 관한 유한요소법적 고찰)

  • 반재삼;김승욱;김선진;조규재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.210-213
    • /
    • 2002
  • The Purpose of this study is to know temperature and thermal stress distribution in specimens during processing of WEDM. If it is constant to the cutting speed and the thickness of material, it is very important to the effect of temperature and the thermal stress distribution after cutting processing. This paper show the analysis result of the distribution of temperature and the residual stress along the direction of thickness before processing of WEDM and after when the cooling temperature is$20^{\circ}C$. The maximum temperature of edge of specimens is $1600^{\circ}C$. It has little temperature gradient in the depth which is 5mm away from edge of specimens. Equivalent residual stress is result in 180.7 MPa at maximum temperature.

  • PDF

A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes

  • Zhang, Chao;Zhou, Wei;Ma, Gang;Hu, Chao;Li, Shaolin
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.485-501
    • /
    • 2015
  • Cooling by the flow of water through an embedded cooling pipe has become a common and effective artificial thermal control measure for massive concrete structures. However, an extreme thermal gradient induces significant thermal stress, resulting in thermal cracking. Using a mesoscopic finite-element (FE) mesh, three-phase composites of concrete namely aggregate, mortar matrix and interfacial transition zone (ITZ) are modeled. An equivalent probabilistic model is presented for failure study of concrete by assuming that the material properties conform to the Weibull distribution law. Meanwhile, the correlation coefficient introduced by the statistical method is incorporated into the Weibull distribution formula. Subsequently, a series of numerical analyses are used for investigating the influence of the correlation coefficient on tensile strength and the failure process of concrete based on the equivalent probabilistic model. Finally, as an engineering application, damage and failure behavior of concrete cracks induced by a water-cooling pipe are analyzed in-depth by the presented model. Results show that the random distribution of concrete mechanical parameters and the temperature gradient near water-cooling pipe have a significant influence on the pattern and failure progress of temperature-induced micro-cracking in concrete.

Dynamic Response of Jointed Concrete Pavement in Test Road Due to Temperature Gradient (온도구배에 의한 시험도로 줄눈콘크리트 포장의 동적응답)

  • Yoo Tae-Seok;Jeong Jin-Hoon;Han Seung-Hwan;Sim Jong-Sung
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.25-32
    • /
    • 2006
  • Behavior of concrete pavement due to temperature gradient was investigated for 48 hours at test road using Falling Weight Deflectometer. The deflections at slab center changed similarly to those of ambient temperature and temperature gradients in the slab. And rapid variations in the deflections were observed between 8 to 12 in the morning. However, dynamic modulus of subgrade reaction and joint deflections showed reverse trends to the ambient temperature and temperature gradients. The dynamic modulus of subgrade reaction was significantly affected by temperature gradient when its value got higher. Backcalculated elastic moduli were obtained using AREA method and Method of Equivalent Thickness. The trends of the backcalculated elastic modulus were similar to those of dynamic modulus of subgrade reaction. Measured load transfer efficiencies showed maximum peak in the morning due to dowel locking. However, additional effort is necessary to verify the result.

  • PDF

An Isothermal Temperature Source with a Large Surface Area using the Metal-Etched Microwick-Inserted Vapor Chamber Heat Spreader

  • Go, Jeong-Sang;Kim, Kyung-Chun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.681-688
    • /
    • 2004
  • For use of the thermal cycle of the biochemical fluid sample, the isothermal temperature source with a large surface area was designed, fabricated and its thermal characterization was experimentally evaluated. The comprehensive overview of the technology trend on the temperature control devices was detailed. The large surface area isothermal temperature source was realized by using the vapor chamber heat spreader. The cost-effectiveness and simple manufacturing process were achieved by using the metal-etched wick structure. The temperature distribution was quantitatively investigated by using IR temperature imaging system at equivalent temperatures to the PCR thermal cycle. The standard deviation was measured to be within 0.7$^{\circ}C$ for each temperature cycle. This concludes that the presented isothermal temperature source enables no temperature gradient inside bio-sample fluid. Furthermore it can be applied to the cooling of the electronic devices due to its slimness and low thermal spreading resistance.

Reduction of Computing Time through FDM using Implicit Method and Latent Heat Treatment in Solidification Analysis (FDM에 의한 응고해석시 계산시간 단축을 위한 음적해법의 적용과 잠열처리방법)

  • Kim, Tae-Gyu;Choi, Jung-Kil;Hong, Jun-Pyo;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.13 no.4
    • /
    • pp.323-332
    • /
    • 1993
  • An implicit finite difference formulation with three methods of latent heat treatment, such as equivalent specific heat method, temperature recovery method and enthalpy method, was applied to solidification analysis. The Neumann problem was solved to compare the numerical results with the exact solution. The implicit solutions with the equivalent specific heat method and the temperature recovery method were comparatively consistent with the Neumann exact solution for smaller time steps, but its error increased with increasing time step, especially in predicting the solidification beginning time. Although the computing time to solve energy equation using temperature recovery method was shorter than using enthalpy method, the method of releasing latent heat is not realistic and causes error. The implicit formulation of phase change problem requires enthalpy method to treat the release of latent heat reasonably. We have modified the enthalpy formulation in such a way that the enthalpy gradient term is not needed, and as a result of this modification, the computation stability and the computing time were improved.

  • PDF

An Experimental Study of Vortex Formation of a Circular Cylinder with Serrated Fins (Serrated Fin Tube 후류에 대한 유동가시화 적용 및 근접후류 특성에 관한 연구)

  • Boo Jung-Sook;Kim Kyung-Chun;Ryu Byong-Nam
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.27-30
    • /
    • 2002
  • An experimental study is performed to investigate the characteristics of near wake behind a circular cylinder with serrated fins using the constant temperature anemometer and through flow visualization. Previous report(Boo at al., 2001) shows that there are three different modes in vortex shedding behavior. This paper is focused on the identification of the physical reasons why the difference is occured in vortex shedding. The through flow velocity crossing fins decreases as increasing fin height and decreasing fin pitch mainly due to the flow resistence. Vortex shedding is affected strongly by velocity distribution around fin tube, especially by the velocity gradient. The velocity distribution at X/d=0.0 has lower gradient with increasing freestream velocity and fin height and decreasing fin pitch. Those differences in velocity gradients generate different vortex shedding mechanism.

  • PDF

Structural Behavior of Concrete Pavement Due to Temperature Variations (온도변화에 의한 콘크리트 포장도로의 구조 거동 연구)

  • 조병완
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 1991
  • Some sections of concrete highway pavements have been viewed with great concern by highway officials and engineers due to the severe cracking and failure problems. This is mainly due to the traffic loads in addition to temperature variations between top and bottom of concrete slab, which cause the concrete slab to curl up and down depending on the thermal gradient, respectively. Subsequently, a major consideration was given to the derivation of stiffness matrix and equivalent nodal loads due to the uniform gravity load, temperature and shrinkage of concrete. And the structural behavior of concrete highway pavement due to the temperature variations throughout the nations has been emphasized.

  • PDF

Temperature thread multiscale finite element simulation of selective laser melting for the evaluation of process

  • Lee, Kang-Hyun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.31-51
    • /
    • 2021
  • Selective laser melting (SLM), one of the most widely used powder bed fusion (PBF) additive manufacturing (AM) technology, enables the fabrication of customized metallic parts with complex geometry by layer-by-layer fashion. However, SLM inherently poses several problems such as the discontinuities in the molten track and the steep temperature gradient resulting in a high degree of residual stress. To avoid such defects, thisstudy proposes a temperature thread multiscale model of SLM for the evaluation of the process at different scales. In microscale melt pool analysis, the laser beam parameters were evaluated based on the predicted melt pool morphology to check for lack-of-fusion or keyhole defects. The analysis results at microscale were then used to build an equivalent body heat flux model to obtain the residual stress distribution and the part distortions at the macroscale (part level). To identify the source of uneven heat dissipation, a liquid lifetime contour at macroscale was investigated. The predicted distortion was also experimentally validated showing a good agreement with the experimental measurement.

Evaluation of the East Asian Summer Monsoon Season Simulated in CMIP5 Models and the Future Change (CMIP5 모델에 나타난 동아시아 여름몬순의 모의 성능평가와 미래변화)

  • Kwon, Sang-Hoon;Boo, Kyung-On;Shim, Sungbo;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.133-150
    • /
    • 2017
  • This study evaluates CMIP5 model performance on rainy season evolution in the East Asian summer monsoon. Historical (1986~2005) simulation is analyzed using ensemble mean of CMIP5 19 models. Simulated rainfall amount is underestimated than the observed and onset and termination of rainy season are earlier in the simulation. Compared with evolution timing, duration of the rainy season is uncertain with large model spread. This area-averaged analysis results mix relative differences among the models. All model show similarity in the underestimated rainfall, but there are quite large difference in dynamic and thermodynamic processes. The model difference is shown in horizontal distribution analysis. BEST and WORST group is selected based on skill score. BEST shows better performance in northward movement of the rain band, summer monsoon domain. Especially, meridional gradient of equivalent potential temperature and low-level circulation for evolving frontal system is quite well captured in BEST. According to RCP8.5, CMIP5 projects earlier onset, delayed termination and longer duration of the rainy season with increasing rainfall amount at the end of 21st century. BEST and WORST shows similar projection for the rainy season evolution timing, meanwhile there are large discrepancy in thermodynamic structure. BEST and WORST in future projection are different in moisture flux, vertical structure of equivalent potential temperature and the subsequent unstable changes in the conditional instability.

The Effect of Serrated Fins on the Flow Around a Circular Cylinder

  • Boo, Jung-Sook;Ryu, Byong-Nam;Kim, Kyung-Chun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.925-934
    • /
    • 2003
  • An experimental study is performed to investigate the characteristics of near wake flow behind a circular cylinder with serrated fins using a constant temperature anemometer and flow visualization. Various vortex shedding modes are observed. Fin height and pitch are closely related to the vortex shedding frequency after a certain transient Reynolds number. The through velocity across the fins decreases with increasing fin height and decreasing fin pitch. Vortex shedding is affected strongly by the velocity distribution just on top of the finned tube. The weaker gradient of velocity distribution is shown as increasing the freestream velocity and the fin height, while decreasing the fin pitch. The weaker velocity gradient delays the entrainment flow and weakens its strength. As a result of this phenomenon, vortex shedding is decreased. The effective diameter is defined as a virtual circular cylinder diameter taking into account the volume of fins, while the hydraulic diameter is proposed to cover the effect of friction by the fin surfaces. The Strouhal number based upon the effective diameters seems to correlate well with that of a circular cylinder without fins. After a certain transient Reynolds number, the trend of the Strouhal number can be estimated by checking the ratio of effective diameter to inner diameter. The normalized velocity and turbulent intensity distributions with the hydraulic diameter exhibit the best correlation with the circular cylinder's data.