• Title/Summary/Keyword: error range

Search Result 2,794, Processing Time 0.036 seconds

The Error Structure of the CAPPI and the Correction of the Range Dependent Error due to the Earth Curvature (CAPPI 반사도의 오차구조 및 지구곡률효과로 인한 거리오차 보정)

  • Yoo, Chulsang;Yoon, Jungsoo
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.309-319
    • /
    • 2012
  • It is important to characterize and quantify the inherent error in the radar rainfall to make full use of the radar rainfall. This study verified the error structure of the reflectivity and corrected the range dependent error in the CAPPI using a VPR (vertical profile of reflectivity) model. The error of the CAPPI to display the reflectivity data becomes bigger for the range longer than 100 km. This range dependent error, however, is significantly improved by corrected the CAPPI data using the VPR model.

Adaptive Wireless Localization Filter Containing NLOS Error Mitigation Function

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Range-based wireless localization system must measure accurate range between a mobile node (MN) and reference nodes. However, non-line-of-sight (NLOS) error caused by the spatial structures disturbs the localization system obtaining the accurate range measurements. Localization methods using the range measurements including NLOS error yield large localization error. But filter-based localization methods can provide comparatively accurate location solution. Motivated by the accuracy of the filter-based localization method, a filter residual-based NLOS error estimation method is presented in this paper. Range measurement-based residual contains NLOS error. By considering this factor with NLOS error properties, NLOS error is mitigated. Also a process noise covariance matrix tuning method is presented to reduce the time-delay estimation error caused by the single dynamic model-based filter when the speed or moving direction of a MN changes, that is the used dynamic model is not fit the current dynamic of a MN. The presented methods are evaluated by simulation allowing direct comparison between different localization methods. The simulation results show that the presented filter is more accurate than the iterative least squares- and extended Kalman filter-based localization methods.

Extraction of registration parameters from range images considering measurement error (측정오차를 고려한 거리영상의 변환계수 추출)

  • 윤강식;이병욱;박래홍
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.5
    • /
    • pp.66-72
    • /
    • 1997
  • In this paper, we propose a method improving the accuracy of th eregistration coefficients calculated form two range images considering the measurement error. The employed range finder is based on triangulation and the depth measurement error is described with an error covariance matrix, which is based on thesensitivity of the range measurements. Experimental results demonstrate that the registration coefficients obtained with the proposed method are better than the results when the measurment errors are neglected.

  • PDF

A Gradient Method Based Near-Field Range Estimation Technique Robust to Direction-of-Arrival Error (방위각 오차에 강인한 경사법 기반 근접장 표적 거리 추정 기법)

  • Kim, Joon-Doo;Cho, Chom-Gun;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.130-136
    • /
    • 2012
  • In this paper, we propose a near-field range estimation method for a uniform linear array that can calibrate bearing estimation error which give a bad influence on a range estimation process. When a range is fixed, the bearing error is calibrated to maximize the beamformer output by the proposed algorithm based on the gradient method. Simulation results show that the proposed algorithm can compensate the bearing error which is less than the mainlobe beamwidth so that reduce the range estimation error as similar as the case of no bearing error.

A Study on the accuracy of Rangefinder between vessels by use of GPS (GPS를 이용한 선간거리계의 정확도에 관한 연구)

  • 김광홍
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.215-226
    • /
    • 1999
  • The experimented rangefinder consist of sets of V/A-Code GPS and sets of L1 C/A-code & carrier phase receivers connected by two spread spectrum radio modems in order to measure relative range and bearing between two ship antennas by real time, comparing and analyzing accuracy of both GPS receivers at the fix point on the land by means of executing zero baseline test by C/A code and by carrier phase as well as measuring distance range 5m, 10m, 15m between each other receivers. The results from the measurement of relative range and bearing are as follows as ;1. According to the results from zero baseline test, the average error by C/A-code receiver is less than 0.1m, which proves theories from published books but when each GPS receivers track different satellites, the range accuracy error becomes up to 100m by means of S/A. Because of this sudden wide range error, rangefinder is not appropriate at relative range measurement without additional modification of the algorism of the GPS receiver itself.2. According to relative range measurement by Carrier Phase and zero baseline test at static condition, the range error is less than 3.5cm in case that it passes more than 5 minutes after GPS sets can track simultaneously more than 6 satellites. Its main reason is understood that the phase center of antenna is bigger than geodetic antenna.3. When range measurement of two receivers from 5m, to 10m to 15m, the each range error is 0.340m, 0.190m, 0.011m and each standard variation is 0.0973m, 0.0884m, 0.0790m. The range error and standard variation are in inverse proportion to distance between two receivers. 4. L1 Carrier Phase GPS generally needs 5 minutes to fix and during this ambiguity search, the relative range and bearing angle is shown to be various.

  • PDF

Comparisons of Error Characteristics between TOA and TDOA Positioning in Dense Multipath Environment (다중경로 환경에서의 TOA방식과 TDOA방식의 측위성능 비교)

  • Park, Ji-Won;Park, Ji-Hee;Song, Seung-Hun;Sung, Tae-Kyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.415-421
    • /
    • 2009
  • TOA(time-of-arrival) and TDOA(time-difference-of-arrival) positioning techniques are commonly used in many radio-navigation systems. From the literature, it is known that the position estimate and error covariance matrix of TDOA obtained by GN(Gauss-Newton) method is exactly the same as that of TOA when the error source of the range measurement is only an IID white Gaussian noise. In case of geo-location and indoor positioning, however, multi-path or NLOS(non-line-of-sight) error is frequently appeared in range measurements. Though its occurrence is random, the multipath acts like a bias for a stationary user if it occurs. This paper presents the comparisons of error characteristics between TOA and TDOA positioning in presence of multi-path or NLOS error. It is analytically shown that the position estimate of TDOA is exactly the same as that of TOA even when bias errors are included in range measurements with different magnitudes. By computer simulation, position estimation error and error distribution are analyzed in presence of range bias errors.

Error analysis of 3-D surface parameters from space encoding range imaging (공간 부호화 레인지 센서를 이용한 3차원 표면 파라미터의 에러분석에 관한 연구)

  • 정흥상;권인소;조태훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.375-378
    • /
    • 1997
  • This research deals with a problem of reconstructing 3D surface structures from their 2D projections, which is an important research topic in computer vision. In order to provide robust reconstruction algorithm, that is reliable even in the presence of uncertainty in the range images, we first present a detailed model and analysis of several error sources and their effects on measuring three-dimensional surface properties using the space encoded range imaging technique. Our approach has two key elements. The first is the error modeling for the space encoding range sensor and its propagation to the 3D surface reconstruction problem. The second key element in our approach is the algorithm for removing outliers in the range image. Such analyses, to our knowledge, have never attempted before. Experimental results show that our approach is significantly reliable.

  • PDF

eLoran Navigation Algorithm Considering Errors Proportional to the Range (거리에 비례하는 오차를 고려한 eLoran 항법 알고리즘)

  • Song, Se-Phil;Choi, Heon-Ho;Kim, Young-Baek;Lee, Sang-Jeong;Park, Chan-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2326-2332
    • /
    • 2011
  • eLoran is enhanced Loran-C and eLoran is researched for as GPS backup system because this system is resistant to signal interference and has high accuracy. TOA measurements of eLoran include errors proportional to the range such as PF, SF, ASF and EF. Therefore these error factors must be compensated for improved accuracy of position. Generally, error models or GPS aided compensation methods are used, but these methods are limited by lack of infrastructure or system performance. Therefore, this paper proposes new model of error factors included in eLoran TOA measurements and navigation algorithm using this model. Error factors in this model are sum of a certain size of error and error proportional to the range. And feasibility and performance of proposed navigation algorithm are verified by using raw measurements.

Error analysis for time-in-flight laser range finder with multiple toe amplitude modulation

  • Matsumoto-Moriyama, Masao;Mima, Kazuhiko;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.554-557
    • /
    • 1993
  • The error analysis for the Time-in-Flight Laser Range Finder with Multiple Tone Amplitude Modulation relevant to the phase detection error is made. The distance can be estimated to solve the formulate which express the relationship between the absolute distance from the range finder to the object and the wavenumbers and the phases of the modulated waves by the optimization technique. The main cause of the estimation error can be considered as the phase detection error induced from the amplitude modulator and the phase detector. To clarify the phase detection error and the optimal amplitude frequency set, the numerical analysis are made.

  • PDF