• 제목/요약/키워드: esophageal cancer cells

검색결과 60건 처리시간 0.029초

Inhibition of the interaction between Hippo/YAP and Akt signaling with ursolic acid and 3'3-diindolylmethane suppresses esophageal cancer tumorigenesis

  • Ruo Yu Meng;Cong Shan Li;Dan Hu;Soon-Gu Kwon;Hua Jin;Ok Hee Chai;Ju-Seog Lee;Soo Mi Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권5호
    • /
    • pp.493-511
    • /
    • 2023
  • Hippo/YAP signaling hinders cancer progression. Inactivation of this pathway contributes to the development of esophageal cancer by activation of Akt. However, the possible interaction between Akt and Hippo/YAP pathways in esophageal cancer progression is unclear. In this study, we found that ursolic acid (UA) plus 3'3-diindolylmethane (DIM) efficiently suppressed the oncogenic Akt/Gsk-3β signaling pathway while activating the Hippo tumor suppressor pathway in esophageal cancer cells. Moreover, the addition of the Akt inhibitor LY294002 and the PI3K inhibitor 3-methyladenine enhanced the inhibitory effects of UA plus DIM on Akt pathway activation and further stimulated the Hippo pathway, including the suppression of YAP nuclear translocation in esophageal cancer cells. Silencing YAP under UA plus DIM conditions significantly increased the activation of the tumor suppressor PTEN in esophageal cancer cells, while decreasing p-Akt activation, indicating that the Akt signaling pathway could be down-regulated in esophageal cancer cells by targeting PTEN. Furthermore, in a xenograft nude mice model, UA plus DIM treatment effectively diminished esophageal tumors by inactivating the Akt pathway and stimulating the Hippo signaling pathway. Thus, our study highlights a feedback loop between the PI3K/Akt and Hippo signaling pathways in esophageal cancer cells, implying that a low dose of UA plus DIM could serve as a promising chemotherapeutic combination strategy in the treatment of esophageal cancer.

Expression of PGDH Correlates with Cell Growth in Both Esophageal Squamous Cell Carcinoma and Adenocarcinoma

  • Yang, Guo-Tao;Wang, Juan;Xu, Tong-Zhen;Sun, Xue-Fei;Luan, Zi-Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권3호
    • /
    • pp.997-1000
    • /
    • 2015
  • Esophageal cancer represents the fourth most common gastrointestinal cancer and generally confers a poor prognosis. Prostaglandin-producing cyclo-oxygenase has been implicated in the pathogenesis of esophageal cancer growth. Here we report that prostaglandin dehydrogenase, the major enzyme responsible for prostaglandin degradation, is significantly reduced in expression in esophageal cancer in comparison to normal esophageal tissue. Reconstitution of PGDH expression in esophageal cancer cells suppresses cancer cell growth, at least in part through preventing cell proliferation and promoting cell apoptosis. The tumor suppressive role of PGDH applies equally to both squamous cell carcinoma and adenocarcinoma, which enriches our understanding of the pathogenesis of esophageal cancer and may provide an important therapeutic target.

Anti-CSC Effects in Human Esophageal Squamous Cell Carcinomas and Eca109/9706 Cells Induced by Nanoliposomal Quercetin Alone or Combined with CD 133 Antiserum

  • Zheng, Nai-Gang;Mo, Sai-Jun;Li, Jin-Ping;Wu, Jing-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권20호
    • /
    • pp.8679-8684
    • /
    • 2014
  • CD133 was recently reported to be a cancer stem cell and prognostic marker. Quercetin is considered as a potential chemopreventive agent due to its involvement in suppression of oxidative stress, proliferation and metastasis. In this study, the expression of CD133/CD44 in esophageal carcinomas and Eca109/9706 cells was explored. In immunoflurorescence the locations of $CD133^+$ and multidrug resistance 1 $(MDR1)^+$ in the same E-cancer cells were coincident, mainly in cytomembranes. In esophageal squamous cell carcinomas detected by double/single immunocytochemistry, small $CD133^+$ cells were located in the basal layer of stratified squamous epithelium, determined as CSLC (cancer stem like cells); $CD44^+$ surrounding the cells appeared in diffuse pattern, and the larger $CD44^+$ (hi) cells were mainly located in the prickle cell layer of the epithelium, as progenitor cells. In E-cancer cells exposed to nanoliposomal quercetin (nLQ with cytomembrane permeability), down-regulation of NF-${\kappa}Bp65$, histone deacetylase 1 (HDAC1) and cyclin D1 and up-regulation of caspase-3 were shown by immunoblotting, and attenuated HDAC1 with nuclear translocation and promoted E-cadherin expression were demonstrated by immunocytochemistry. In particular, enhanced E-cadherin expression reflected the reversed epithelial mesenchymal transition (EMT) capacity of nLQ, acting as cancer attenuator/preventive agent. nLQ acting as an HDAC inhibitor induced apoptotic cells detected by TUNEL assay mediated via HDAC-NF-${\kappa}B$ signaling. Apoptotic effects of liposomal quercetin (LQ, with cytomembrane-philia) combined with CD133 antiserum were also detected by CD133 immunocytochemistry combined with TUNEL assay. The combination could induce greater apoptotic effects than nLQ induced alone, suggesting a novel anti-CSC treatment strategy.

Expression of bcl-2 and p53 in Induction of Esophageal Cancer Cell Apoptosis by ECRG2 in Combination with Cisplatin

  • Song, Hai-Yan;Deng, Xiao-Hui;Yuan, Guo-Yan;Hou, Xin-Fang;Zhu, Zhen-Dong;Zhou, Li;Ren, Ming-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1397-1401
    • /
    • 2014
  • Aim: To investigate the mechanisms of induction of apoptosis of esophageal cancer cells by esophageal cancer-related gene 2 (ECRG2) in combination with cisplatin (DDP). Methods: Hoechest staining was performed to analyze the effects of single ECRG2 and ECRG2 in combination with DDP on apoptosis of EC9706 cells. The expression levels of p53 and bcl-2 mRNA and protein were determined by RT-PCR and Western blotting, respectively. Results: The number of apoptotic cells after the treatment with ECRG2 in combination with DDP for 24 hours was more than that after the treatment with single ECRG2. RT-PCR and Western blotting showed that the expression levels of bcl-2 mRNA and protein were both down-regulated, while p53 mRNA and protein were both up-regulated in the cells treated with ECRG2 in combination with DDP compared with those given ECRG2 alone. Conclusion: ECRG2 in combination with DDP can enhance the apoptosis of EC9706 cells, possibly by down-regulating bcl-2 expression and up-regulating p53.

Lentivirus Mediated GOLPH3 shRNA Inhibits Growth and Metastasis of Esophageal Squamous Cancer

  • Wang, Qiang;Wang, Xian;Zhang, Can-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5391-5396
    • /
    • 2013
  • Aim: To investigate the role of Golgi phosphoprotein 3 (GOLPH3) in tumour growth and metastasis of esophageal squamous cancer. Methods: A lentiviral shRNA-vector was utilized to stably knockdown GOLPH3 in Eca-109 esophageal squamous cancer cells. mRNA transcription and protein expression of GOLPH3 were examined by real-time quantitative PCR and Western blotting, respectively. Cell proliferation activity was assessed by MTT assay and invasion and migration potentials by matrigel invasion and transwell motility assays. Results: Stable knockdown in the GOLPH3 cell line was established. PD-A gene expression was significantly suppressed by lentivirus-mediated RNAi, which resulted in reducing the capacity for cell proliferation, migration, invasion and adhesion in vitro. In vivo, GOLPH3 depletion resulted in inhibition of tumour growth, with stable decrease in the expression of GOLPH3 in tumor xenografts. Conclusions: Our findings suggest that lentivirus mediated silencing of the GOLPH3 gene has a significant anti-tumour effect on esophageal squamous cancer in vitro and in vivo. In addition, the results indicate that GOLPH3 might be an effective molecular target for gene therapy in esophageal squamous cancer.

Effects of Thermotherapy on Th1/Th2 Cells in Esophageal Cancer Patients Treated with Radiotherapy

  • Hong, Mei;Jiang, Zao;Zhou, Ying-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2359-2362
    • /
    • 2014
  • Background: To investigate the effects of double radiofrequency hyperthermia on Th1/Th2 cells in esophageal cancer patients treated with radiotherapy. Materials and Methods: 22 patients with esophageal cancer were divided into a radiotherapy group (10 cases) and a combined group (double radiofrequency hyperthermia combined with radiotherapy group, 12 cases). Both groups received conventional radiotherapy using a cobalt-60 therapy apparatus (TD60-66Gy/30-33F). Patients in the combined group also underwent double radiofrequency hyperthermia (2F/W, 8-10F). Before and after treatment, Th1, Th2, Tc1 and Tc2 cells in peripheral blood were determined with flow cytometry. Results: In the radiotherapy group, Th1 cell contents before and after radiotherapy were $17.5{\pm}5.26%$ and $9.69{\pm}4.86%$, respectively, with a significant difference (p<0.01). The Th1/Th2 ratio was significantly decreased from $28.2{\pm}14.3$ to $16.5{\pm}10.4 $(p<0.01). In the combined group, Th1 cell content before radiotherapy was $15.9{\pm}8.18%$, and it increased to $18.6{\pm}8.84$ after radiotherapy (p>0.05), the Th1/Th2 ratio decreasing from $38.4{\pm}36.3$ to $28.1{\pm}24.0$ (p>0.05). Changes in Th2, Tc1 and Tc2 cell levels were not significant in the two groups before and after therapy (p>0.05). Conclusions: Double radiofrequency hyperthermia can promote the conversion from Th2 to Th1 cells, and regulate the balance of Th1/Th2 cells.

Paris polyphylla Smith Extract Induces Apoptosis and Activates Cancer Suppressor Gene Connexin26 Expression

  • Li, Fu-Rong;Jiao, Peng;Yao, Shu-Tong;Sang, Hui;Qin, Shu-Cun;Zhang, Wei;Zhang, Ya-Bin;Gao, Lin-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권1호
    • /
    • pp.205-209
    • /
    • 2012
  • Background: The inhibition of tumor cell growth without toxicity to normal cells is an important target in cancer therapy. One possible way to increase the efficacy of anticancer drugs and to decrease toxicity or side effects is to develop traditional natural products, especially from medicinal plants. Paris polyphylla Smith has shown anti-tumour effects by inhibition of tumor promotion and inducement of tumor cell apoptosis, but mechanisms are still not well understood. The present study was to explore the effect of Paris polyphylla Smith extract (PPSE) on connexin26 and growth control in human esophageal cancer ECA109 cells. Methods: The effects of PPSE on Connexin26 were examined by RT-PCR, western blot and immunofluorescence; cell growth and proliferation were examined by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay. Results: PPSE inhibited the growth and proliferation on esophageal cancer ECA109 cells, while increasing the expression of connexin26 mRNA and protein; conversely, PPSE decreased Bcl-2 and increased Bad. Conclusion: This study firstly shows that PPSE can increase connexin26 expression at mRNA and protein level, exerting anti-tumour effects on esophageal cacner ECA109 cells via inhibiting cell proliferation and inducing cell apoptosis.

Comparative Analysis of Oct4 in Different Histological Subtypes of Esophageal Squamous Cell Carcinomas in Different Clinical Conditions

  • Vaiphei, Kim;Sinha, Saroj Kant;Kochhar, Rakesh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3519-3524
    • /
    • 2014
  • Background: Esophageal squamous cell carcinoma (ESCC) is a common cancer with poor prognosis. It has been hypothesized that Oct4 positive radioresistant stem cells may be responsible for tumor recurrence. Hence, we evaluated Oct4 expression in ESCC in pre-treatment, post neo-adjuvant residual and post-surgical recurrent tumours. Materials and Methods: Endoscopic mucosal biopsies were used to study Oct4 expression and the observations were correlated with histological tumor grades, patient data and clinical background. Results: All patients presented with dysphagia with male predominance and a wide age range. Majority of the patients had intake of mixed diet, history of alcohol and tobacco intake was documented in less than half of the patients. Oct 4 expression was significantly higher in poorly differentiated (PDSCC) and basaloid (BSCC) subtypes than the other better differentiated tumor morphology. Oct4 was also expressed by adjoining esophageal mucosa showing low grade dysplasia and basal cell hyperplasia (BCH). Biopsies in PDSCC and BSCC groups were more likely to show a positive band for Oct4 by polymerase chain reaction (PCR). Dysplasia and BCH mucosa also showed Oct4 positivity by PCR. All mucosal biopsies with normal morphology were negative for Oct4. Number of tissue samples showing Oct4 positivity by PCR was higher than that by the conventional immunohistochemistry (p>0.05). Oct4 expression pattern correlated only with tumor grading, not with other parameters including the clinical background or patient data. Conclusions: Our observations highlighted a possible role of Oct4 in identifying putative cancer stem cells in ESCC pathobiology and response to treatment. The implications are either in vivo existence of Oct4 positive putative cancer stem cells in ESCC or acquisition of cancer stem cell properties by tumor cells as a response to treatment given, resulting ultimately an uncontrolled cell proliferation and treatment failure.

Inhibition of Proliferation and Induction of Apoptosis by the Combination of β-carotene and 1,25-dihydroxyvitamin D3 in Human Esophageal Cancer EC9706 Cells

  • Wang, Shao-Kang;Yang, Lei;Wang, Ting-Ting;Huang, Gui-Ling;Yang, Li-Gang;Sun, Gui-Ju
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6327-6332
    • /
    • 2012
  • Esophageal cancer is a common malignant tumor occurring in human esophageal epithelial tissue. The primary purpose of this paper was to define the effects of ${\beta}$-carotene and 1,25-dihydroxyvitamin $D_3$, alone and in combination, on cell proliferation, cell cycle and apoptosis of human esophageal cancer EC9706 cells. Treatment with different concentrations of ${\beta}$-carotene and/or 1,25-dihydroxyvitamin $D_3$. MTT assay showed that ${\beta}$-carotene and 1,25-dihydroxyvitamin $D_3$ significantly inhibited proliferation of EC9706 cells in a dose- and time-dependent manner. Further studies also demonstrated that ${\beta}$-carotene alone or 1,25-dihydroxyvitamin $D_3$ alone caused a marked increase on the induction of apoptosis in EC9706 cells. The percentage of G0/G1-phase cells significantly increased on addition of 1,25-dihydroxyvitamin $D_3$ alone, but there were no significant changes with ${\beta}$-carotene alone. These two agents in combination synergistically inhibited cell growth and induced apoptosis. Therefore, our results indicate that ${\beta}$-carotene and 1,25-dihydroxyvitamin $D_3$ in combination may provide a novel strategy for preventing and treating esophageal cancer.

Silencing of PDK1 Gene Expression by RNA Interference Suppresses Growth of Esophageal Cancer

  • Yu, Jing;Chen, Kui-Sheng;Li, Ya-Nan;Yang, Juan;Zhao, Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.4147-4151
    • /
    • 2012
  • The current study was conducted to explore the inhibitory effects of a small interfering RNA (siRNA) on 3-phosphoinositide-dependent protein kinase 1 (PDK1) expression in esophageal cancer 9706 (EC9706) cells and the influence on their biological behavior. After transfection of a synthesized PDK1 siRNA, PDK1 mRNA and protein expression and the phosphorylation level of the downstream Akt protein were assessed using RT-PCR and Western blot analysis. Proliferation, apoptosis, cell invasion and in vivo tumor formation capacity were also investigated using MTT, flow cytometry, Transwell invasion trials, and nude mouse tumor transplantion, respectively. PDK1 siRNA effectively suppressed PDK1 mRNA and protein expression, and down-regulated the phosphorylation level of the Akt protein in the EC9706 cells (P < 0.05). It also inhibited cell proliferation and invasion, and promoted apoptosis; such effects were particularly obvious at 48 h and 72 h after transfection (P < 0.05). Growth of transplanted tumors was inhibited in nude mice, with decreased PDK1 expression in tumor tissues. PDK1 may be closely correlated with proliferation, apoptosis and invasion of esophageal cancer cells and thus may serve as an effective target for gene therapy.