• Title/Summary/Keyword: evacuation time

Search Result 477, Processing Time 0.03 seconds

A Study on the Relationship Analysis Model between Visibility and Evacuation Time by User's Movement in the Lower Floor of General Hospital (종합병원 저층부에서의 이용자 이동에 따른 가시성과 피난 시간의 상관관계 분석 모델에 관한 연구)

  • Jung, Gi Hyun;Kweon, Jihoon
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.11-21
    • /
    • 2019
  • The purpose of this study was to present an analysis model for finding the correlation between visibility and evacuation time as users move in the outpatient department of the general hospital. The spatial scope of the study was limited to the first floor and second floor which are used for the outpatient department. Traffic density in outpatient departments was surveyed on site. Based on the surveyed traffic density, the evacuation simulation model was established for calculating the escape route and evacuation time for an individual user. The traffic density of the outpatient department as per the evacuation time was also calculated. With using evacuation simulations, the flow of evacuees was calculated through the density of traffic over the time of evacuation. Visibility data were set in the simulation model for users' escape routes. A correlation analysis between the product of evacuation flow measure and visibility measure of the evacuation population and evacuation time was performed. The analysis result showed negative correlation within a specific distance range. This study presented an analysis model showing that the evacuation condition considering spatial visibility in the outpatient department of general hospital visibility was negatively related to the analyzed evacuation time at the design stage.

A Study on the Effects of All-in-one Automatic Fire Shutters Installed in High School on Evacuation Time

  • Lee, Soon Beom;Kong, Ha Sung;Lee, Jai Young
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.182-192
    • /
    • 2022
  • This study analyzed the effects of the all-in-one automatic fire shutter (hereinafter referred to as "all-in-one shutter") installed along the fire compartment in a five-story high school building on the evacuation time by using the Pathfinder simulation program. When the all-in-one shutter was added as a new variable, the evacuation time was delayed, indicating insufficient evacuation safety. The evacuation time exceeded the appropriate standard when the evacuation exit was designated to the students in the present state of being placed on the 2nd, 3rd, and 4th floors and the all-in-one shutter was activated. When students were placed on the 1st, 2nd and 3rd floors under the same conditions, the evacuation time was also greatly exceeded. However, when the width of the entrance was set to 130cm, the evacuation time was almost the same as when the all-in-one shutter was not installed. In high-rise school buildings, the bottleneck caused by all-in-one shutters is becoming a major factor in evacuation barriers. To ensure the evacuation safety of school buildings, it has been judged that evacuation education and training to predict the evacuation time required through the all-in-one shutter entrance and induce an evacuation procedure suitable for the standard evacuation time should be carried out in parallel. The implications of this study and suggestions for effective fire compartments and follow-up studies were discussed.

A Study on the Calculation of Evacuation Capacity for the Development of Korean Life Safety Standards for Medical facilities (의료시설의 한국형 인명안전기준개발을 위한 피난용량 산정에 관한 연구)

  • Choi, Yun-Ju;Kim, Yun-Seong;Jin, Seung-Hyeon;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.92-93
    • /
    • 2021
  • In the case of medical facilities, the evacuation time is delayed due to the decrease in the number of people in the hallway and exits due to the increase in the width of evacuation by using mobile beds, wheelchairs, crutches, etc. Accordingly, it is considered to secure evacuation capacity to reduce evacuation time according to corridor width and exit width. Accordingly, we would like to compare the standards related to the evacuation capacity of medical facilities in Korea and NFPA, derive differences, and use evacuation simulations to compare evacuation times according to changes in corridor width and exit width. In Korea, it is calculated based on the floor area by use, but in the case of NFPA 101, the number of evacuation routes, stair width, corridor exit width, and two-way door width was stipulated depending on the number of people. Using evacuation simulation, efficient evacuation capacity is calculated according to the reduction of evacuation time by changing the width of the hallway, changing the width of the exit, the width of the corridor, and the width of the exit. The evacuation simulation is intended to be used to secure evacuation safety of domestic medical facilities by calculating the effective evacuation time reduction by changing the width of the hallway and exit.

  • PDF

A Study on the Evacuation Performance of Evacuation System using Real-time IoT Information (실시간 IoT 정보 활용 피난시스템의 피난성능 연구)

  • Lee, Chul Gyoo;Moon, Sang Ho;Lee, Sang Kyu;Lee, Gye Eun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.281-291
    • /
    • 2019
  • In order to reflect complex and diverse building types, resident characteristics and disaster factors, it is necessary to introduce a flexible situation-based response system based on real-time information. Intelligent CCTV, hybrid sensor, location scanner, and customized broadcasting device were examined to introduce for the real-time response intelligent response system and its feasibility was verified through field test. In addition, based on the real-time information, the evacuation simulation was executed by assuming the dormitory building and the resident of the school, and the safety of the evacuation and the shortening of the pinnacle time were confirmed. The feasibility of real time information based evacuation comparing with the existing evacuation system were verified in the case of evacuation.

A Study on the Evacuation Procedure Analysis Model of General Hospital Considering Patients Types (환자의 유형을 고려한 종합 병원의 피난 절차 분석 모델에 관한 연구)

  • Lee, Seonyeong;Kweon, Jihoon
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.2
    • /
    • pp.7-16
    • /
    • 2022
  • Purpose: This study aimed to present an analysis model evaluating evacuation performance considering patient types and procedural evacuation in the medical facility. The user group of the medical facility, including users challenged in evacuation behavior, entails the risk of many casualties. Therefore, it is necessary to plan an evacuation procedure that considers the evacuation characteristics of users. Methods: Through the review of precedent studies, the evacuation procedure of the medical facility, the classification of patient types, and the evacuation procedure was set as conditions and variables for the analysis. The result caused by a variety of conditions and variables were explored. Results: 1) The total evacuation completion time and congestion time were shortened at the procedural evacuation. Moreover, it derived many users from evacuating at the initial phase. 2) The proposed model can provide a basis for proposing a space planning direction that considers the possibility of not carrying out the evacuation plan. 3) It supports safe evacuation by identifying variables that reduce overcrowding by comparing the congestion time of overcrowded spaces. 4) The analysis model can identify the overcrowded space through the evacuation route and suggest the basis for architectural improvements that reduce overcrowding. Implications: The study results can be used to analyze the performance of evacuation procedures and support the establishment of evacuation procedures and building plans for safe evacuation for medical facilities.

Evaluation of Evacuation Safety of High School According to Change in the Width of Hallway

  • Seon-Yong Jeong;Hong-Sang Lee;Ha-Sung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.60-72
    • /
    • 2023
  • The purpose of this study is to measure the change in evacuation time at high schools according to the change in hallway width using an evacuation simulation program and to analyze the result of such change. In order to measure the evacuation time according to the change in the hallway width according to the 「Rules on the Standards for Evacuation and Fire Protection Structures of Buildings」 and to analyze the change in evacuation time resulted from the increase in the number of occupants, a scenario was constructed by applying the 「performance-oriented design method and standard for firefighting facilities, etc.」. As a result of the experiment, it was found that the evacuation time was the shortest when the width of the hallway was the widest, which was 3m. On the other hand, the evacuation time took the longest at 1.8m, which was the width of the second narrowest hallway. For the safety of high school students who spend a lot of time at school, it is necessary to secure a wide hallway width when building a new school or to provide periodic safety education in the case of an existing school whose hallways are considered narrow.

A Study on the Development of Smartphone-based Real-time Evacuation Scenarios for Large-scale Buildings (스마트폰을 활용한 중·대규모 건물의 실시간 피난 시나리오 개발에 관한 연구)

  • Kim, Minseok;Kim, Youngsun;Cha, Jieun;Han, Gyu Bin;Choi, Junho
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.1
    • /
    • pp.15-26
    • /
    • 2020
  • The purpose of this study is to develop every possible real-time evacuation scenarios for large-scale buildings which considering continuously changing conditions during the events. From the review of the previous studies on smartphone-based real-time evacuation systems, this study proposed the customized egress scenarios. The scenario considered the characteristics of facilities, disaster types, and individual factors of evacuees. This study verified the proposed process for real-time evacuation scenarios by applying the several actual fire cases happened recently in Korea. Based on the result of this research, necessary technologies for the real-time evacuation systems are identified and can be applied to develop the more effective evacuation system.

A Study on the Consideration Factors for the Calculation of Elevator Evacuation Time (엘리베이터 피난계산 고려인자에 관한 연구)

  • Kim, Hak-Joong;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2010
  • It is more important to study for reducing the evacuation time of occupant in fire, because the building has been taller and deeper. It has known that elevator was not safe in fire situation. So, the using elevator for evacuation has been prohibited. But the study of elevator evacuation is progressed with designing the elevator safe from flame and smoke. This study analyze the consideration factors for the calculation of elevator evacuation time. The factors for elevator evacuation calculation is starting time, round trip time. And round trip time is divided into standing time and travel time. The elevator evacuation time can be calculated by compounding these factors and adding the efficiency. For using elevator to evacuate, we need additional study for smoke control, compartment, water proof and safe electric power supply.

A Study on the Architectural Planning of the Refuge Areas in Geriatric Hospitals Considering Horizontal Evacuation of the Elderly (노인요양병원에서 고령자의 수평 피난을 고려한 대피공간의 건축계획에 관한 연구)

  • Kim, Mijung;Kweon, Jihoon
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.29 no.3
    • /
    • pp.7-15
    • /
    • 2023
  • Purpose: This study was conducted with the aim of presenting spatial planning directions for evacuation spaces based on an analysis of the performance of horizontal evacuation during the early stages of fire incidents in a geriatric hospital. Methods: Based on a review of previous studies, the research model was designed by establishing occupancy conditions, evacuation, and fire scenarios. The analysis model was developed by considering vulnerable areas in terms of evacuation movement and analyzing the results of evacuation performance. Furthermore, the study analyzed the improvement in evacuation performance by arranging refuge areas. Results: The results of the study are as follows. Firstly, vulnerability spots were identified in terms of evacuation performance by schematizing Required Safe Egress Time, Available Safe Egress Time, and their differences. Secondly, the Required Safe Egress Time in the adjacent public spaces along the escape routes of occupants was found to be higher compared to the Available Safe Egress Time. Thirdly, the results of the correlation analysis between the difference in Available Safe Egress Time and Required Safe Egress Time during the early stages of a fire, as well as their constituent factors, demonstrated that user congestion is a more significant factor in compromising evacuation safety than the physical changes in the fire condition. Fourthly, the analysis of evacuation time was conducted by designating refuge areas where occupants can evacuate within a sufficient timeframe. This led to a decrease in the Required Safe Egress Time. Implications: This study is expected to be used as data on the direction of evacuation space planning to improve the evacuation performance of Geriatric Hospital.

A Study on the Evacuation Performance According to Variation in Remoteness between Exit Stairways in Tall Buildings

  • Han, Gisung;Kim, Tae-Young;Lee, Kyung-Hoon
    • Architectural research
    • /
    • v.22 no.2
    • /
    • pp.53-61
    • /
    • 2020
  • The purpose of this study is to examine the influence of remoteness between exit stairways on evacuation performance. Firstly, we reviewed the design regulations of the U.S., the U.K., and South Korea, in relation to remoteness between Exit stairways. Secondly, evacuation simulation was implemented, in order to evaluate the adequacy of each standard. Eight tall buildings in South Korea were selected for the simulation. Evacuation performance was assessed for different remote distances between Exit stairways. Lastly, this research analyses the evacuation simulation data statistically in relation to the effect of remoteness on evacuation time. We found that as the distance between two exit stairways increases, the total evacuation time and average evacuation time for evacuees decreases. There was no statistical influence between the maximum travel distance of the evacuee and the remoteness between two exit stairways, but there was a significant effect on the average travel distance of the evacuees. In addition, the results from the optimal point showed that the L_ratio had the highest evacuation time at 0.44, while the D_ratio had the highest evacuation time at 0.38.