• Title/Summary/Keyword: evaporative loss

Search Result 33, Processing Time 0.03 seconds

A Study on the Evaporative Emission Characteristics of Korean Gasoline Vehicles (국내 휘발유 자동차의 증발가스 배출 특성에 관한 연구)

  • Park, Jun-Hong;Park, Young-Pyo;Lim, Yun-Sung;Lee, Jong-Tae;Kim, Jung-Su;Choi, Kwang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.121-129
    • /
    • 2011
  • Hydrocarbons which are the main sources of VOCs from motor vehicles are emitted not only from the engine exhaust gas but also from evaporation of the fuel in storage and supplying systems. Evaporative emissions from gasoline fuel systems could be classified by diurnal, hotsoak and running loss. Diurnal loss test procedures are different as countries. Korea introduced new evaporative regulation in 2009 with 24hour VT-shed test procedure and relaxed emission standards. The estimations on different test procedures in this study show that the new Korean regulation get a little more severe than before and the 2 day diurnal loss test of U.S. is the most severe. So the test procedures as well as the stronger standards should be considered in the next evaporative emission regulation to reduce VOCs from motor vehicles. The important parameters to affect evaporative emissions are air and fuel temperature and fuel vapor pressure. Diurnal loss increases exponentially as rising air temperature and vapor pressure. The effects of vapor pressure on running loss are different as the capacities of canisters. Tests with simulating real temperature and driving conditions show that hydrocarbons in evaporative emissions could be more than those in exhaust gas in summer season because of the higher air temperature.

EFFECTS OF NICARBAZIN AND HOT TEMPERATURE ON EVAPORATIVE WATER LOSS, ACID-BASE BALANCE, BODY TEMPERATURE AND CARBON DIOXIDE EXHALATION IN ADULT ROOSTERS

  • Lee, B.D.;Lee, S.K.;Hyun, W.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.97-101
    • /
    • 1994
  • Two experiments were conducted to study the effect of ambient temperature and nicarbazin on SCWL adult roosters. In Experiment 1, the effects of nicarbazin supplementation (125 ppm) on the water metabolism, blood acid-base balance; and rectal temperature of 16 birds in normal ($21^{\circ}C$) and hot ($35-36^{\circ}C$) temperature were investigated. In Experiment 2, the evaporative water loss and $CO_2$ exhalation from 8 birds were measured individually with an open-circuit gravimetric respiration apparatus in normal ($21^{\circ}C$) and hot ($33.5-34^{\circ}C$) temperature. The amount of water intake and evaporative water loss increased in birds under heat stress (HS). Nicarbazin exacerbated these effect in hot temperature. Also, nicarbazin decreased the blood $pCO_2$ and increased pH of HS birds. The rectal temperature of birds increased in hot temperature, and nicarbazin worsened this effect. The evaporative water loss, measured directly with respiration apparatus (Experiment 2), was increased in hot temperature. HS decreased the amount of $CO_2$ exhalation. Nicarbazin did not exert ant effect on either of these measurements, probably due to the limited duration (2 h) of the trial. The decrease in $CO_2$ exhalation by HS birds could be explained by reduced metabolic rate, which helps homeothermy of birds in hot temperature.

Critical Review on Evaporative Loss of Semivolatile Aerosols during Sampling

  • Kim, Seung-Won
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.171-181
    • /
    • 2010
  • Semivolatile aerosols exist as vapor and particles at the same time in room temperature and each phase has different intake and uptake mechanisms. This characteristic requires substantial consideration during exposure assessment of semivolatile aerosol. Some sampling methods for solid particles pose high possibility of evaporative loss during sampling. Therefore, when establishing sampling strategy for them, the factors affecting the phase distribution of semivolatile aerosol should be counted including semivolatile aerosol of interest and sampling methods used. Evaluation for phase distributions of semivolatile aerosols is also recommended. Metalworking fluids, pesticides, asphalt fumes, diesel exhaust, and environmental tobacco smoke are common health-related semivolatile aerosols in workplaces.

Effect of Parameters in Evaporative Removal Process by Absorption of a CW Laser (연속 레이저 흡수에 의한 증발제거 과정의 관련 인자 영향 고찰)

  • 김진윤;송태호
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.67-76
    • /
    • 1995
  • Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd: YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as BrJ, and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased. To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained.

  • PDF

인공심장판막의 현황

  • 김형묵
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.94-96
    • /
    • 1989
  • Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd:YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as Br.), and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased.To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained.

  • PDF

Pulmonary and Cutaneous Evaporative Water Losses in Sahiwal and Sahiwal × Holstein Cattle During Solar Exposure

  • Aggarwal, Anjuli;Upadhyay, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.3
    • /
    • pp.318-323
    • /
    • 1997
  • In order to assess the effect of solar exposure on pulmonary functions and evaporative losses from skin and pulmonary surfaces, in six healthy Sahiwal (S) and six Sahiwal ${\times}$ Holstein ($S{\times}H$) cattle were exposed to direct sun during summer. Breed differences were observed during exposure. Increase in sweating rate was higher in crossbreds (222%) than in Sahiwal (125%). Pre-exposure (ambient temperature, $32.6{\pm}0.85^\circ}C$, solar radiation, $0.9cal\;cm^{-2}min^{-1}$) evaporative loss from skin accounted for about 90% of the losses and remaining losses were contributed by pulmonary surfaces in Sahiwal. The contribution of evaporation through skin increased to 92% (ambient temperature $39.4{\pm}0.68^\circ}C$, solar radiation, $1.35cal\;cm^{-2}min^{-1}$). In crossbreds 80% of the evaporative losses were through skin before exposure which increased to 87% after exposure to solar radiations. Rectal temperature increase was higher in crossbreds ($1.5^{\circ}C$) than in Sahiwal ($0.8^{\circ}C$). With the increase in pulmonary evaporative losses, respiratory frequency increased to 2 fold in Sahiwal and pulmonary ventilation increased 1.6 times the resting value in Sahiwal due to solar exposure. In $S{\times}H$ crossbreds the respiratory frequency increased 3.5 times and pulmonary ventilation increased only to 1.8 times due to decrease in tidal volume. There was about 2 fold increase in alveolar ventilation in both the breeds, the increase in dead space ventilation was more in crossbreds than in Sahiwal. Behavioral symptoms exhibited by animals after exposure were profuse salivation, open mouth panting, tongue protrusion and general restlessness.

Evaluation of the Wear Comfort of Outdoorwear by Skin Wettedness Analyses (Skin Wettedness 분석을 통한 아웃도어웨어의 착용 쾌적성 평가)

  • Jeong, Jeong-Rim;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.11 no.6
    • /
    • pp.947-952
    • /
    • 2009
  • The purpose of this study is to analyze skin wettedness($w$) used as the rate index of thermal comfort, and to evaluate the wear comfort of outdoorwear. Skin wettedness is widely used to express the degree of thermal comfort. If skin wettedness exceeds a certain threshold, the body feels damp and discomfort. An experiment which consisted of rest(30 min), exercise(30 min) and recovery(20 min) periods was administered in a climate chamber with 10 healthy male participants. Two kinds of outdoorwears made of 100% cotton fabrics (Control) and specially engineered fabrics having feature of quick sweat absorbency and high speed drying fabric (Functional) were evaluated in the experiment. The condition of climate chamber was controlled according to the thermal insulation of 4 kinds of experimental ensembles(E1~E4). Total sweat loss, sweat loss absorbed into clothing and skin temperature were measured. Skin wettedness was calculated from the ratio of evaporative rate to the maximal evaporative capacity. Skin wettedness of 'Functional' was lower than 'Control' in the 3 kinds of ensembles(E1, E2, E4) because the materials of 'Functional' were composed of quick sweat absorbency and high speed drying fabrics, water vapour permeability and waterproof fabrics.

Conceptual Development of a Subminiature Cool Pad Applying Sorption Cooling Effect (흡습 냉각 원리를 이용한 소형 냉각 패드에 관한 연구)

  • 황용신;이대영;김우승
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.121-127
    • /
    • 2004
  • This paper describes conceptual development and idea-verification of a sub-miniature portable cooler which dose not necessitate any pre-cooling nor any external energy supply. The basic principle of the cooling mechanism is the vaporization of water and sub-sequent cooling due to the evaporative latent heat loss. In this work, the vaporization of the water is stimulated by desiccant material to improve the cooling effect. The evaporative cooling caused by the desiccant is modeled and analyzed considering the sorption characteristics of the desiccant. In addition, the portable cooler is fabricated in the shape of a thin pad, and its cooling characteristics are tested and compared with the analytic results.

Performance Analysis of Carbon Canister for Reducing Evaporative Emissions in a Gasoline Automotive Engine

  • Chung, Yon-Jong;Cho, Gyu-Sang;Erickson, Paul A.;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.47-53
    • /
    • 2008
  • The objective of this paper is to clarify the flow characteristic, velocity distribution, pressure loss, and other such fundamental data for the canister during loading and purging. The amount of gas that is loaded increases as the loading rate is decreased and the time increased, and the purging improves as the purge rate is increased. The hydrocarbons that are purged initially have a high concentration, and a large amount is purged. During loading and purging, the temperature initially increases and decreases drastically due to heat generation and heat loss.

Analysis of Cooling Performance of a Compact Regenerative Evaporative Cooler (밀집형 재생증발식 냉방기의 냉각 성능 분석)

  • Park, Min-Hee;Moon, Seung-Jae;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.316-324
    • /
    • 2016
  • This study investigated a compact regenerative evaporative cooler (REC). To achieve practical applications of an REC, it is very important to consider the compactness as well as the cooling performance. Therefore, a prototype of the REC was designed and fabricated to improve the compactness by reducing the length through the insertion of fins in both the dry and wet channels. The REC prototype was tested in terms of performance evaluation under various operating conditions. An analytical model was also developed to analyze the effects of the axial conduction through the solid body of the REC, the wetness of the surface in the wet channel, and the thermal capacity of the evaporation water flow. The model was validated by comparing the results of a simulation with experimental data. The numerical simulation was based on the model to analyze the performance of the REC and to suggest methods to improve the cooling performance of the REC. Finally, the performance of the present REC was compared to that obtained in previous experimental studies. The results showed that the REC prototype in the present study is the most compact and achieves the highest cooling performance.