• Title/Summary/Keyword: exopolysaccharide production

Search Result 67, Processing Time 0.029 seconds

Exopolysaccharide Production and Mycelial Growth in an Air-Lift Bioreactor Using Fomitopsis pinicola

  • Choi, Du-Bok;Maeng, Jeung-Moo;Ding, Ji-Lu;Cha, Wol-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1369-1378
    • /
    • 2007
  • For effective exopolysaccharide production and mycelial growth by a liquid culture of Fomitopsis pinicola in an air-lift bioreactor, the culture temperature, pH, carbon source, nitrogen source, and mineral source were initially investigated in a flask. The optimal temperature and pH for mycelial growth and exopolysaccharide production were $25^{\circ}C$ and 6.0, respectively. Among the various carbon sources tested, glucose was found to be the most suitable carbon source. In particular, the maximum mycelial growth and exopolysaccharide production were achieved in 4% glucose. The best nitrogen sources were yeast extract and malt extract. The optimal concentrations of yeast extract and malt extract were 0.5 and 0.1%, respectively. $K_2HPO_4\;and\;MgSO_4{\cdot}7H_2O$ were found to be the best mineral sources for mycelial growth and exopolysaccharide production. In order to investigate the effect of aeration on mycelial growth and exopolysaccharide production in an air-lift bioreactor, various aerations were tested for 8 days. The maximum mycelial growth and exopolysaccharide production were 7.9 g/l and 2.6 g/l, respectively, at 1.5 vvm of aeration. In addition, a batch culture in an air-lift bioreactor was carried out for 11 days under the optimal conditions. The maximum mycelial growth was 10.4 g/l, which was approximately 1.7-fold higher than that of basal medium. The exopolysaccharide production was increased with increased culture time. The maximum concentration of exopolysaccharide was 4.4 g/l, which was about 3.3-fold higher than that of basal medium. These results indicate that exopolysaccharide production increased in parallel with the growth of mycelium, and also show that product formation is associated with mycelial growth. The developed model in an air-lift bioreactor showed good agreement with experimental data and simulated results on mycelial growth and exopolysaccharide production in the culture of F. pinicola.

The Mutant Lactobacillus plantarum GNS300 Showed Improved Exopolysaccharide Production and Antioxidant Activity

  • Jae-Youn Jung;Deok-Ho Kwon;Yoo Jin Lee;Young Keun Song;Moon Sik Chang;Suk-Jin Ha
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.18-25
    • /
    • 2023
  • After random mutagenesis, the mutant Lactobacillus plantarum GNS300 showed improved exopolysaccharide production as determined by the quantification of total sugar. The mutant L. plantarum GNS300 produced 2.82 g/l of exopolysaccharide which showed 79.62% improved exopolysaccharide production compared with the parental strain. When exopolysaccharide of L. plantarum GNS300 was analyzed, the exopolysaccharide is composed of galactose (93.35%) and glucose (6.65%). Through the optimization of fermentation conditions using a bioreactor, 2.93 g/l of exopolysaccharide was produced from 20 g/l of glucose at 35℃, 500 rpm, and 0.1 vvm for 12 h. The mutant L. plantarum GNS300 exhibited 69.18% higher antioxidant activity than that from the parental strain, which might be caused by higher exopolysaccharide production. The concentrated supernatant of the mutant L. plantarum GNS300 inhibited the growth of gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) and gram-negative bacteria (Escherichia coli, Vibrio parahaemolyticus, and Salmonella typhimurium).

Exopolysaccharide Production by Aureobasidium pullulans - Appearance of Melanin Pigment - (Aureobasidium pullulans 에 의한 Exopolysaccharide 생산 - 멜라닌 색소의 출현에 관한 연구 -)

  • 김재형;이기영;강성홍
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.134-142
    • /
    • 1989
  • In exopolysaccharide fermentation by Aureobasidium pulluans, the effects culture conditions (concentration of nitrogen, potassium phosphate, dissolved oxygen, and initial pH) on the production of exopolysaccharide and the appearance of melanin pigment were investigated. The results are as follows. (1) The specific growth rate and the specific production rate of exopolysaccharide were inhibited by substrate when the carbon source concentration higher than $50g\;/\;{\ell}$ and the cell growth increased with increases of nitrogen source but exopolysaccharide production decreased with the nitrogen concentration when it become greater than $1\;g\;/\;{\ell}$. (2) The maximum cell growth and the maximum exopolysaccharide production were obtained at initial pH values of 3.0 and 7.5 respectively. As the initial pH increased, the yeast-like cells increased and the increased of dissolved oxygen increased the cell growth and exopolysaccharide production. (3) As the concentration of dissolved oxygen is increased or the concentration of nitrogen source is decreased, the period of melanin pigment appearance becomes shorter and the melanin pigment never appeared when the initial pH was less than 3.0 or the potassium phosphate was not added.

  • PDF

Isolation Of Latobacillus Producing Exopolysaccharide and Optimization of its Production (Exopolysaccharide생산 유산균주의 분리 및 배양조건)

  • 배인휴;허정원
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.169-175
    • /
    • 2002
  • A lactic acid bacterial isolate Lactobacillus ssp. SCU-M which produces exopolysaccharide was identified and its cultural Condition was investigated. The optimum Conditions for exopolysaccharide(EPS) Production Of Lactobacillus ssp. SCU-M were 37$\^{C}$, pH 6.5, using medium composed of 1.5% galactose, 1.0% yeast extract, 0.25% peptone, 0.15% MgSO$_4$, 0.15% K$_2$HPO$_4$ and 0.1% tween 80 in distilled water. The EPS concentration after 48 hours at the Initial pH 6.5, 37$\^{C}$ in a flask culture was 1,680 mg/ℓ.

A Kinetic Study for Exopolysaccharide Production in Submerged Mycelial Culture of an Entomopathogenic Fungus Paecilomyces tenuipes C240 (동충하초 Paecilomyces tenuipes C240의 균사체 배양에 의한 세포외 다당체 생산의 동력학적 연구)

  • Xu Chung Ping;Yun Jong Won
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.15-20
    • /
    • 2005
  • The unstructured model was tested to describe mycelial growth, exopolysaccharide formation, and substrate consumption in submerged mycelial culture of Paeeiliomyees tenuipes C240. The Logistic equation for mycelial growth, the Luedeking-Piret equation for exopolysaccharide formation, and Luedeking­Piret-like equations for glucose consumptions were successfully incorporated into the model. The value of the key kinetic constants were: maximum specific growth rate ${\mu}m,\;0.7281\;h^{-1};$ growth­associated constant for exopolysaccharide production $(\alpha),\;0.1743g(g\;cells)^{-1}$; non-growth associated constant for exopolysaccharide production $(\beta),\;0.0019g(g\;cells)^{-1}\;;$ maintenance coefficient $(m_s),\;0.0572g\;(g\;cells)^{-1}$. When compared with batch experimental data, the model successfully provided a reasonable description for each parameter during the entire growth phase. The model showed that the production of exopolysaccharide in P. tenuipes C240 was growth-associated. The model tested in the present study can be applied to the design, scale-up, and control of fermentation process for other kinds of basidiomycetes or ascomycetes.

Stepwise Increasing Effects of Agitation and Aeration on Exopolysaccharide Production by Enterobacter sp. (Enterobacter sp.의 다당 생산에 미치는 통기·교반의 단계적 증가 효과)

  • Lee, Shin-Young;Lee, Ju-Ha
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.171-176
    • /
    • 2004
  • The effects of agitation and aeration for exopolysaccharide(EPS) production through batch cultivation of an Enterobacter sp. isolated from the composter were investigated. During the EPS fermentation under conditions of constant agitation speed from 200 to 900 rpm and constant aeration rate of 0.5-2.5 vvm, the low yields of EPS(4.8-5.2g/L) was observed as the viscosity increase of culture broth. With the stepwise increases in agitation speed and aeration rate, the EPS production and the viscosity of EPS were increased 1.3~1.4 times and 2.3~3.6 times higher than those of the fixed conditions, respectively. Therefore, these stepwise increases were considered as the key operating parameters for enhancing EPS production. The max. EPS(6.8g/L) and viscosity(14,000cp) were obtained when the agitation speed was increased from 300 to 900 rpm for 54hrs at 1.5 vvm.

  • PDF

Isolation of the Exopolysaccharide Producing Microorganism and their Cultural Characterisitics (다당류를 생산하는 미생물의 분리와 배양특성)

  • Son, Bong-Soo;Park, Seok-Kyu;Kang, Shin-Kwon;Lee, Sang-Won;Seong, Chi-Nam;Sung, Nack-Kie
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.263-268
    • /
    • 1995
  • A screening was performed to isolate exoploysaccharide-producing microorganisms, which synthesized specific exopolysaccharide for the substitutive of commercial polysaccharides, from natural sources. Soil bacterium, one of 378 mucoid isolates, was finally selected as potential producer of polysaccharides which made the culture broth very viscous and thus examined in detail for optimal medium composition. Isolated strain was identified as Xanthomonas sp. EPS- 1 from the results of morphological and biochemical characteristics. The composition of optimal medium for exopolysaccharide production was as follows: 50 g sucrose, 1.5 g peptone, 2 g KH$_{2}$PO$_{4}$, 2 g MgSO$_{4}$, -7H$_{2}$O, 3 g NaCl, 0.05 g CaCO$_{3}$, 0.07 g FeSO$_{4}$-7H$_{2}$O and 0.05 g MnSO$_{4}$-7H$_{2}$O in 1 liter of distilled water. From the experiments of temperature and pH dependence, the optimal conditions for exopolysaccharide biosynthesis seemed to be 30$\circ$C and 8.0, respectively. About 14.9 gram of maximum exopolysaccharide per liter was obtained at the initial pH 8.0, 30$\circ$C and 250 rpm in a flask culture. The exopolysaccharide EPS-1 had such potential as an emulsifying agent and a gelling agent in comparision with commercial exopolysaccharide.

  • PDF

Effects of Carbon Substrates on Exopolysaccharide Production by Enterobacter sp. (Enterobacter sp. 의 다당 생산에 미치는 탄소원 기질의 영향)

  • Lee Ju-Ha;Lee Shin-Young
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.26-33
    • /
    • 2005
  • The effects of carbon sources for exopolysaccharide production during batch cultivation of an Enterobacter sp. isolated from the composter were investigated. The highest amount of exopolysaccharide was obtained when lactose was used as carbon source. Lactose in medium was converted into glucose and galactose. Glucose was metabolized fast and was completely consumed, but about $20\%$ of lactose was accumulated as galactose. On the other hand, enzyme activity was about $350\~450$ unit with the increase of lactose concentration. Thus, it was considered that the exopolysaccharide might be produced in the course of that lactose was hydrolyzed into glucose and galactose by $\beta-galactosidase$ with respect to that enzyme activity on lactose hydrolysis was accorded to the exopolysaccharide production. When glucose and galactose were added to lactose medium, respectively, it could be considered that glucose was as a repressor and galactose was as a inducer for $\beta-galactosidase$ synthesis even though the mechanisms were not elucidated. The increase of lactose concentration was almost ineffective to the specific growth rate $(0.133\~0.151\;hr^[-1})$ but showed the difference in the biomass content. The higher carbon source concentration, the more residual sugar remained. It was assumed that the optimum lactose concentration for exopolysaccharide production was $30\~70g/L.$ On the other hand, it was considered that the nitrogen acted as growth limiting nutrients to the cell growth. In the cases of 30 and 70 g/L of the fixed carbon concentrations, the increase of the nitrogen sources concentration caused a remarkable increase within the range of $0.059\~0.225\;hr^{-1}$ and $0.141\~0.237hr^{-1}$ of the specific growth rate, respectively, while there was no significant difference in biomass.

Cultural Conditions of Exopolysaccharide KS-1 Produced by Bacillus polymyxa KS-1 (Bacillus polymyxa KS-1에 의한 다당류 KS-1 생산의 발효 조건)

  • 권기석;윤병대주현규
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.441-448
    • /
    • 1995
  • Optimized fermentation medium and cultural conditions for the production or exopolysaccharide KS-1 with Bacillus polymyxa KS-1 was following as; 30g g1ucose, 2.59g yeast extract, $2.5g KH_2PO_4, 0.5g NaCl, 0.3g MgSO_4.7H_20, 0.1g CaC0_3 0.05g, FeSO_4.7H_2O, and 0.05g MnS0_4 . 4H_20in 1 liter distilled water. The exopolysaccharide production was influenced by the by the temperature and pH, the optimal conditions for the production of exopolysaccharide KS-1 seemed to be $30^{\circ}C$ and pH 7.0, respectively. About $10.3g/\ell$ of maximum exopolysaccharide was obtained al the initial pH 7.0, $30^{\circ}C$, 2vvm of aeration rate and 400 rpm of impeller speed in a jar fermentor.

  • PDF

Calcium-Boron Interaction in Exopolysaccharide Production by the Cyanobacterium, Nostoc spongiaeforme

  • Singh;Netu;Asthana, R.K.;Singh, S.P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.381-385
    • /
    • 2000
  • The effect and interaction of Ca and B on exopolysaccharide (EPS) synthesis in the diazotrophically growing cyanobacterium. Nostoc spongiaeforme, was investigated. The absence of B inhibited EPS synthesis 1.56-fold ($16\mu\textrm{g}$ glucose equivalent/mg dry weight, 16 d) over the control cells ($25\mu\textrm{g}$ glucose equivalent) grown in medium containing 0.5 mM Ca and $8{\mu}{\textrm}{m}$ B. When B concentration was raised to $40{\mu}{\textrm}{m}$, EPS production was stimulated 1.8-fold. Reduction of Ca concentraion to one-half (0.25 mM) resulted in increased B demand (16$\muM$) by the cells for EPS production at par with the normal sets. However, without Ca, EPS production also increased as B increased. Addition of B to a Ca-free medium stimulated cyanobacterial diazotrophic growth as well as synthesis of Chl a and phycocyanin (0-8 d). The data suggest B-dependent diazotrophic growth during Ca-deficiency and point to and important interactive role of Ca and B in regulation of cyanobacterial EPS synthesis.

  • PDF