• Title/Summary/Keyword: explicit integration algorithm

Search Result 42, Processing Time 0.037 seconds

Explicit integration algorithm for fully flexible unit cell simulation with recursive thermostat chains (순환적으로 결합되는 정온기들을 갖는 $N{\sigma}T$ 분자동역학 전산모사에 적용한 외연적 적분기법)

  • Jung, Kwang-Sub;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.512-517
    • /
    • 2007
  • In the previous development of the recursive thermostat chained fully flexible cell molecular dynamics simulation, implicit time integration method such as generalized leapfrog integration is used. The implicit algorithm is very much complicated and not easy to show time reversibility because it is solved by the nonlinear iterative procedure. Thus we develop simple, explicit symplectic time integration formula for the recursive thermostat chained fully flexible unit cell simulation. Uniaxial tension test is performed to verify the present explicit algorithm. We check that the present simulation satisfies the ergodic hypothesis for various values of fictitious mass and coefficient of multiple thermostat system. The proposed method should be helpful to predict mechanical and thermal behavior of nano-scale structure.

  • PDF

Explicit time integration algorithm for fully flexible cell simulation (외연적 적분 기법을 적용한 Fully Flexible Cell 분자 동영학 시뮬레이션)

  • Park Shi-Dong;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.389-394
    • /
    • 2006
  • Fully flexible cell preserves Hamiltonian in structure, so the symplectic time integrator is applied to the equations of motion. Primarily, generalized leapfrog time integration (GLF) is applicable, but the equations of motion by GLF have some of implicit formulas. The implicit formulas give rise to a complicate calculation for coding and need an iteration process. In this paper, the time integration formulas are obtained for the fully flexible cell molecular dynamics simulation by using the splitting time integration. It separates flexible cell Hamiltonian into terms corresponding to each of Hamiltonian term, so the simple and completely explicit recursion formula was obtained. The explicit formulas are easy to implementation for coding and may be reduced the integration time because they are not need iteration process. We are going to compare the resulting splitting time integration with the implicit generalized leapfrog time integration.

  • PDF

A Study on the Algorithm for Nonlinear Dynamic Response Analysis of Shell Structure (쉘 구조물의 비선형 동적응답 해석을 위한 Algorithm에 관한 연구)

  • 최찬문
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.2
    • /
    • pp.164-176
    • /
    • 1996
  • The main intention of this paper is to develop and compare the algorithm based on finite element procedures for nonlinear transient dynamic analysis which has combined effects of material and geometric nonlinearities. Incremental equilibrium equations based on the principle of virtual work are derived by the finite element approach. For the elasto - plastic large deformation analysis of shells and the determination of the displacement-time configuration under time-varying loads, the explicit, implicit and combined explicit-implicit time integration algorithm is adopted. In the time structure is selected and the results are compared with each others. Isoparametric 8-noded quadrilateral curved elements are used for shell structure in the analysis and for geometrically nonlinear elastic behaviour, a total Lagrangian coordinate system was adopted. On the other hands, material nonlinearity is based on elasto-plastic models with Von-Mises yield criteria. Thus, the combined explicit-implicit time integration algorithm is benefit in general case of shell structure, which is the result of this paper.

  • PDF

A predictor-corrector algorithm of the generalized-$\alpha$ method for analysis of structural dynamics (동적해석을 위한 일반화된$\alpha$ 방범의 예측 수정자 알고리즘)

  • ;Hulbert, Gregory M.
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.207-213
    • /
    • 1995
  • A new predictor-corrector explicit time integration algorithm is presented for solving structural dynamics problems. The basis of the algorithm is the implicit generalized-.alpha. method recently developed by the authors. Like its implicit parent, the explicit generalized-$\alpha$ method is a one- parameter family of algorithms in which the parameter defines the high-frequency numerical dissipation. The algorithm can be utilized effectively for linear and nonlinear structural dynamics calculations is which numerical dissipation is needed to reduce spurious oscillations inherent in non-dissipative time integration methods used to solve wave propagation problems.

  • PDF

A Splitting Time Integrator for Fully Flexible Cell Molecular Dynamics (분할 적분 기법을 적용한 N-sigma-T 분자동역학 전산모사)

  • Park, Shi-Dong;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.826-832
    • /
    • 2007
  • Fully flexible cell preserves Hamiltonian in structure so that the symplectic time integrator is applicable to the equations of motion. In the direct formulation of fully flexible cell N-Sigma-T ensemble, a generalized leapfrog time integration (GLF) is applicable for fully flexible cell simulation, but the equations of motion by GLF has structure of implicit algorithm. In this paper, the time integration formula is derived for the fully flexible cell molecular dynamics simulation by using the splitting time integration. It separates flexible cell Hamiltonian into terms corresponding to each of Hamiltonian term. Thus the simple and completely explicit recursion formula was obtained. We compare the performance and the result of present splitting time integration with those of the implicit generalized leapfrog time integration.

A Parallel Finite Element Procedure for Contact-Impact Problems (충돌해석을 위한 병렬유한요소 알고리즘)

  • Har, Jason
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1286-1290
    • /
    • 2003
  • This paper presents a newly implemented parallel finite element procedure for contact-impact problems. Three sub-algorithms are includes in the proposed parallel contact-impact procedure, such as a parallel Belytschko-Lin-Tsay (BLT) shell element generation, a parallel explicit time integration scheme, and a parallel contact search algorithm based on the master slave slide-line algorithm. The underlying focus of the algorithms is on its effectiveness and efficiency for inclusion in future finite element systems on parallel computers. Throughout this research, a prototype code, named GT-PARADYN, is developed on the IBM SP2, a distributed-memory computer. Some numerical examples are provided to demonstrate the timing results of the procedure, discussing the accuracy and efficiency of the code.

  • PDF

Efficient MCS for random vibration of hysteretic systems by an explicit iteration approach

  • Su, Cheng;Huang, Huan;Ma, Haitao;Xu, Rui
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.119-139
    • /
    • 2014
  • A new method is proposed for random vibration anaylsis of hysteretic systems subjected to non-stationary random excitations. With the Bouc-Wen model, motion equations of hysteretic systems are first transformed into quasi-linear equations by applying the concept of equivalent excitations and decoupling of the real and hysteretic displacements, and the derived equation system can be solved by either the precise time integration or the Newmark-${\beta}$ integration method. Combining the numerical solution of the auxiliary differential equation for hysteretic displacements, an explicit iteration algorithm is then developed for the dynamic response analysis of hysteretic systems. Because the computational cost for a large number of deterministic analyses of hysteretic systems can be significantly reduced, Monte-Carlo simulation using the explicit iteration algorithm is now viable, and statistical characteristics of the non-stationary random responses of a hysteretic system can be obtained. Numerical examples are presented to show the accuracy and efficiency of the present approach.

Unconditional stability for explicit pseudodynamic testing

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.411-428
    • /
    • 2004
  • In this study, a newly developed unconditionally stable explicit method is employed to solve momentum equations of motion in performing pseudodynamic tests. Due to the explicitness of each time step this pseudodynamic algorithm can be explicitly implemented, and thus its implementation is simple when compared to an implicit pseudodynamic algorithm. In addition, the unconditional stability might be the most promising property of this algorithm in performing pseudodynamic tests. Furthermore, it can have the improved properties if using momentum equations of motion instead of force equations of motion for the step-by-step integration. These characteristics are thoroughly verified analytically and/or numerically. In addition, actual pseudodynamic tests are performed to confirm the superiority of this pseudodynamic algorithm.

The Reaction Probability and the Reaction Cross-section of N + O2→ NO + O Reaction Computed by the 6th-order Explicit Symplectic Algorithm

  • He, Jianfeng;Li, Jing
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.1976-1980
    • /
    • 2006
  • We have calculated the reaction probability and the reaction cross-section of the $N(^4S)+O_2(X^3\sum_{g}^{-})\;\rightarrow\;NO(X^2\Pi)+O(^3P)$ reaction by the quasiclassical trajectory method with the 6th-order explicit symplectic algorithm, based on a new ground potential energy surface. The advantage of the 6th-order explicit symplectic algorithm, conserving both the total energy and the total angular momentum of the reaction system during the numerical integration of canonical equations, has firstly analyzed in this work, which make the calculation of the reaction probability more reliable. The variation of the reaction probability with the impact parameter and the influence of the relative translational energy on the reaction cross-section of the reaction have been discussed in detail. And the fact is found by the comparison that the reaction probability and the reaction cross-section of the reaction estimated in this work are more reasonable than the theoretical ones determined by Gilibert et al.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.