• Title/Summary/Keyword: extended high order sandwich panel theory

Search Result 3, Processing Time 0.019 seconds

Analytical, numerical and experimental investigation of low velocity impact response of laminated composite sandwich plates using extended high order sandwich panel theory

  • Salami, Sattar Jedari;Dariushi, Soheil
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.325-334
    • /
    • 2018
  • The Nonlinear dynamic response of a sandwich plate subjected to the low velocity impact is theoretically and experimentally investigated. The Hertz law between the impactor and the plate is taken into account. Using the Extended High Order Sandwich Panel Theory (EHSAPT) and the Ritz energy method, the governing equations are derived. The skins follow the Third order shear deformation theory (TSDT) that has hitherto not reported in conventional EHSAPT. Besides, the three dimensional elasticity is used for the core. The nonlinear Von Karman relations for strains of skins and the core are adopted. Time domain solution of such equations is extracted by means of the well-known fourth-order Runge-Kutta method. The effects of core-to-skin thickness ratio, initial velocity of the impactor, the impactor mass and position of the impactor are studied in detail. It is found that these parameters play significant role in the impact force and dynamic response of the sandwich plate. Finally, some low velocity impact tests have been carried out by Drop Hammer Testing Machine. The results are compared with experimental data acquired by impact testing on sandwich plates as well as the results of finite element simulation.

Geometrically nonlinear analysis of sandwich beams under low velocity impact: analytical and experimental investigation

  • Salami, Sattar Jedari;Dariushi, Soheil
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.273-283
    • /
    • 2018
  • Nonlinear low velocity impact response of sandwich beam with laminated composite face sheets and soft core is studied based on Extended High Order Sandwich Panel Theory (EHSAPT). The face sheets follow the Third order shear deformation beam theory (TSDT) that has hitherto not reported in conventional EHSAPT. Besides, the two dimensional elasticity is used for the core. The nonlinear Von Karman type relations for strains of face sheets and the core are adopted. Contact force between the impactor and the beam is obtained using the modified Hertz law. The field equations are derived via the Ritz based applied to the total energy of the system. The solution is obtained in the time domain by implementing the well-known Runge-Kutta method. The effects of boundary conditions, core-to-face sheet thickness ratio, initial velocity of the impactor, the impactor mass and position of the impactor are studied in detail. It is found that each of these parameters have significant effect on the impact characteristics which should be considered. Finally, some low velocity impact tests have been carried out by Drop Hammer Testing Machine. The contact force histories predicted by EHSAPT are in good agreement with that obtained by experimental results.

An extension of a high order approach for free vibration analysis of the nano-scale sandwich beam with steel skins for two types of soft and stiff cores

  • Marandi, S. Masoud;Dehkordi, Mohsen Botshekanan;Nourbakhsh, S. Hassan
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.261-276
    • /
    • 2019
  • The study investigates the free vibration of a nano-scale sandwich beam by an extended high order approach, which has not been reported in the existing literature. First-order shear deformation theory for steel skins and so-called high-order sandwich panel theory for the core are applied. Next, the modified couple stress theory is used for both skins and cores. The Hamilton principle is utilized for deriving equations and corresponding boundary conditions. First, in the study the three-mode shapes natural frequencies for various material parameters are investigated. Also, obtained results are evaluated for two types of stiff and soft cores and isotropic, homogenous steel skins. In the research since the governing equations and also the boundary conditions are nonhomogeneous, therefore some closed-form solutions are not applicable. So, to obtain natural frequencies, the boundary conditions are converted to initial conditions called the shooting method as the numerical one. This method is one of the most robust approaches to solve complex equations and boundary conditions. Moreover, three types of simply supported on both sides of the beam (S-S), simply on one side and clamp supported on the other one (S-C) and clamped supported on both sides (C-C) are scrutinized. The parametric study is followed to evaluate the effect of nano-size scale, geometrical configurations for skins, core and material property change for cores as well. Results show that natural frequencies increase by an increase in skins thickness and core Young modulus and a decrease in beam length, core thickness as well. Furthermore, differences between obtained frequencies for soft and stiff cores increase in higher mode shapes; while, the more differences are evaluated for the stiff one.